lIsla

instituto politécnico de gestdo e tecnologia

MASTER'S DEGREE IN WEB TECHNOLOGY
AND SYSTEMS ENGINEERING

Al-Powered Vehicle Image Recognition for Smart

Urban Planning and Traffic Management

Paulo André Guimaraes

Supervisor: Firmino Oliveira da Silva

Vila Nova de Gaia
Academic Year 2024-2025

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

© Paulo Guimaraes 2025

All rights reserved.

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Acknowledgements

First, I thank Teacher Firmino Silva for guiding me in this master course from the very
beginning. Deep thanks to my family for supporting me in this process of pursuing changes
and self-realization. And, to Engineer Afonso Costa and F. Vaal, just to let you know that

you’ve done a lot to this very soul responsible for this document.

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

lIsla

instituto politécnico de gestao e tecnologia

INSTITUTO POLITECNICO DE GESTAO E TECNOLOGIA

Al-Powered Vehicle Image Recognition for Smart

Urban Planning and Traffic Management

Paulo André Guimaraes

Aprovado em 16/12/2025

Composicao do Juri

Presidente
Prof. Doutor Jorge Pereira Duque

Arguente
Prof.® Doutora Célia Talma Gongalves

Orientador
Prof. Doutor Firmino Oliveira da Silva

Vila Nova de Gaia
2025

II

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Projeto de Mestrado realizado sob a orientagdo do
Professor Doutor Firmino Oliveira da Silva,
apresentado no ISLA - Instituto Politécnico de
Gestao e Tecnologia de Vila Nova de Gaia para
obtenc¢ao do grau de Mestre em Engenharia de
Tecnologias e Sistemas Web, conforme o
Despacho n° 9371/2020.

III

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Abstract

Modern cities face complex challenges in traffic management and road maintenance,
which impact both quality of life and infrastructure efficiency. Al-powered vehicle image
recognition offers a promising solution by transforming visual data into actionable insights

for optimized transportation planning and predictive infrastructure maintenance.

Artificial Intelligence enables complex, data-driven tasks through machine learning, with
computer vision processing visual data to extract actionable insights in urban environments.
By leveraging vehicle identification and object detection, Al enhances urban planning and
transportation systems, optimizing traffic flow, reducing congestion, and improving safety,
while also enabling proactive infrastructure maintenance through real-time analysis. Recent
advances in deep learning and convolutional neural networks have introduced robust, real-
time image recognition capabilities that offer practical solutions for the challenges of urban

mobility and infrastructure management.

This work focuses on the development of an Al-driven image recognition application for
vehicle identification, aimed at supporting integrated urban planning, transportation systems
optimization, and infrastructure monitoring. The research begins with an overview of
artificial intelligence, machine learning, and deep learning principles, with particular
emphasis on the architecture and effectiveness of CNNs in object detection tasks. A
structured methodology is presented, detailing the proposed architectural system, selection
of relevant datasets, data annotation processes, and experimental setup. Special attention is
given to the implementation of state-of-the-art object detection models, such as YOLO (You
Only Look Once), trained and evaluated using the mixed COCO+BDD100k dataset within
the PyTorch framework, and optimized through GPU acceleration to achieve high-speed
inference and detection accuracy. Based on the Design Science Research methodology, this
work developed a real-time vehicle tracking system using a YOLOvIIn, achieving a
detection precision of approximately 78% and a Multi-Object Tracking Accuracy (MOTA)
0f 67.5%, successfully demonstrating capabilities for vehicle counting, speed estimation, and

ESAL calculation to support urban planning and predictive maintenance.

vV

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Furthermore, the study discusses the system's potential to integrate with urban monitoring
platforms, offering real-time data streams for city planners and traffic authorities. The
findings underscore the transformative potential of Al in advancing urban mobility, safety,
and infrastructure resilience, while also identifying avenues for future research, including the
integration of multi-source data, scalability challenges, and adaptive learning mechanisms

for evolving urban environments.

KEYWORDS: Artificial Intelligence (Al); Vehicle Image Recognition; Urban Planning;
Transportation Management; Deep Learning; Smart Cities

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Resumo

As cidades modernas enfrentam desafios complexos na gestdo do trafego e manutengao
de estradas, o que impacta tanto a qualidade de vida quanto a eficiéncia da infraestrutura. O
reconhecimento de imagens de veiculos com IA oferece uma solugdo promissora ao
transformar dados visuais em informagdes aciondveis para um planeamento de transporte

otimizado e uma manutengao preditiva da infraestrutura.

A Inteligéncia Artificial permite tarefas complexas e orientadas por dados através da
aprendizagem maquina, sendo que a visao computacional processa dados visuais para extrair
informagdes aciondveis em ambientes urbanos. Ao alavancar a identificacdo de veiculos e a
detecdo de objetos, a IA melhora o planeamento urbano e os sistemas de transporte,
otimizando o fluxo de trafego, reduzindo congestionamentos e melhorando a seguranca, além
de permitir uma manutencdo proativa da infraestrutura através de analise em tempo real.
Avancos recentes em aprendizagem profunda e redes neuronais convolucionais introduziram
capacidades robustas de reconhecimento de imagem em tempo real que oferecem solugdes

praticas para os desafios da mobilidade urbana e gestao de infraestruturas.

Este trabalho foca-se no desenvolvimento de uma aplicagdo de reconhecimento de
imagem orientada por IA para identificacdo de veiculos, com o objetivo de apoiar o
planeamento urbano integrado, a otimizagao dos sistemas de transporte € a monitorizacao de
infraestruturas. A investigacdo comec¢a com uma visao geral dos principios de inteligéncia
artificial, aprendizado de maquina e aprendizagem profunda, com énfase particular na
arquitetura e eficacia das CNNs em tarefas de detecdo de objetos. E apresentada uma
metodologia estruturada, detalhando o sistema arquitetonico proposto, a sele¢do de conjuntos
de dados relevantes, os processos de anotacdo de dados e o enquadramento experimental. E
dada atencdo especial a implementa¢do de modelos de dete¢ao de objetos de tltima geragao,
como 0 YOLO, treinados e avaliados usando o conjunto de dados do COCO+BDD100k no
ambiente PyTorch, e otimizados através de aceleragao por GPU para alcangar alta velocidade
de inferéncia e precisdo de detecdo. Com base na metodologia Design Science Research, este
trabalho desenvolveu um sistema de rastreamento de veiculos em tempo real usando um
YOLOv11n, alcangando uma precisdo de dete¢do de aproximadamente 78% e uma Multi-

Object Tracking Accuracy (MOTA) de 67,5%, demonstrando com sucesso capacidades para

VI

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

contagem de veiculos, estimativa de velocidade e calculo de ESAL para apoiar o planeamento

urbano e a manutengdo preditiva.

Além disso, o estudo discute o potencial do sistema para se integrar a plataformas de
monitorizagdo urbana, oferecendo fluxos de dados em tempo real para planeamento urbano
e autoridades de transito. As conclusdes refor¢am o potencial transformador da IA no avango
da mobilidade urbana, seguranga e resiliéncia das infraestruturas, enquanto identifica
diregdes para pesquisas futuras, incluindo a integracao de dados de multiplas fontes, desafios
de escalabilidade e mecanismos de aprendizagem adaptativa para ambientes urbanos em

evolugao.

PALAVRAS-CHAVE: Inteligéncia Artificial (IA); Reconhecimento de Imagens de
Veiculos; Planeamento Urbano; Gestdo dos Transportes; Deep Learning; Cidades

Inteligentes

VII

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Summary

ACKNOWIEAZEMENLES ...ttt I
F N 015 ¢ T AT P PP TP TP PPPPPPPPPPPPP II
RESUIMO ... VI
SUMIMATY .o e e e e e e e e e e e e e e s r e e e s e e e e nnnes VIII
LSt Of FIUIES ..ottt ettt e s X
| 3 A O i 1 o) PO P PR PPPPR XI
F 02 (0} 47 0 0 PP XII
| 13 (0T L1 To1 50 o DO TP TP PP PP PPPPPPPPPPPPR 2
| B 01 1)« PP TP TP PP PP PPPPPPTP 2
|\ (o) 5 Az 15 10) o PP P PP PPPP PP 3
L3 PUIPOSE ..ottt ettt et e et e e 4
L4 IMEEROQ. ... e e e 6
1.5 Structure of the dOCUMENL...........ooviiiiiii e 6

2. Artificial Intelligence in Urban Planning and traffic management..................cccceeenee 8
2.1 Artificial Intelligence and Its Role in Urban Planningcccccoviniiiiinicnnn. 8
2.2 Artificial Intelligence for traffic management and Smart Citi€S.........ccccoovvvvveerinnnnn. 9
2.3 Machine learning and Computer VISIONovieirirrieeiiiiiieeeiieiee e 11
2.4 DEEP LEAIMINGceiiiiiiii ettt 13
2.4.1 Convolutional Neural Networks.........ccocvviiiiiiiiiiiiii 14
2.4.2 TMage ClasSTIICATION ...covvieiiiiiiiii i e ettt e e e 17
3 N @ 1} [T A (514577 5 10) 4 DO PP PP TP PP PPPP TP 19

2.5 Traffic Volume Impact on the Roads...........coooiiiiiiiiiiiiiiiiiiiiic e 22
2.5.1 An Al & Computer Vision Approach for Vehicle Counting and Classification.. 24

2.6 Related WOTKScccoiiiiiiiiee e 24

3. System Design and Methodologyueuiiiiiiiiiiiiiiiiiiiie e 27
3.1 Research Methodology and Development Approach.............ccccveeiviiiiiiniiiinicniinnn. 27
3.2 SyStem TEQUITEIMEINLSvveiiriiiiiieiiirie sttt e e 27
3.3 Proposed System ATChItECTUIEovviiiiiiiiie e 29
3.3.1 Architectural Principles and Patterns.cccceeiiiiiiiiiiiiii e 29
3.3.2 Structural DIagramseeeeiiiiiiiiiiiiie s 30
3.3.3 Core Domain MOdEIS.........uuviiiiiiiiieiiiiiee et 33
3.3.4 RUNtIME COMPONENES ...vvvvvrriieeisiiiiiiiririeeeesssssiiiireeeesesssssssrrnseeeeeesssssnsssrsereees 35
3.3.5 Summary table: Core Domain Models and Runtime Components 36

3.4 System IMPIemMENtaAtiOnc.ccuuviieiiiiiieeiiiiie et e e 37
3.4.1 Technologies and TOOIS..........coiiiiiiiiiiiiiie e 37
3.4.2 Applied Design Patterns.cooiuriiiiiiiiiieiiiiii e 39

3.5. Core AIZOTTERIMS ...t e et e e 42
3.5.1 Vehicle Detection With YOLOcccoiiiiiiiiiiiiiieiecee e 42
3.5.2 Multi-Object Tracking with BY TETrack.........cccooiiiiiiiiiiiicee e 43

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

3.5.3 Virtual Line Counting Algorithm and Speed Average Calculation 44
3.5.4 ESAL Calculation for Predictive Maintenancecoevvvvrerreeeeessiiivnnneneens 46

4. Chapter 4: EXperimental SELUDooiiiiiiiiiiiiiiiiee et 48
4.1 Dataset Selection and Preparation...........ccccoccvveeiiiieriiie e 48
4.2 Model Training (YOLO) ...cocuvieiiiieiiiie ettt 49
4.2.1 Environment Setup (Hardware/Software)............ccccovviiiiiiiiiiccee 49
4.2.2 Training Configuration and Hyperparametersccccooovveinviiiniirenineenieeenns 51

4.3 Prototype Application DeVelOPMENtcccvvviiiiiiiiiieiiiie e 52
4.3.1 Backend (FastAPI) and Frontend (Streamlit) Setup)ccccccovviiviiiiiinnennnnn. 52
4.3.2 TESHING SCENATIO +.eeeeevreeeeeiiieeeeeeiie e e e e e e e s s e e e e s e e e s s e e e e e e e e e e nnnneeeeannnes 53

4.4 Evaluation MethodOlOgYcooviiiiiiiiiie e 54
4.4.1 Performance IMELTICS.uuuuriiiiieeeiiiiiiie ittt e e e 54
4.4.2 Experimental Protocolooooiiiiiiiii e 55

5. Results and DiSCUSSIONciiiiiiiiiiiiiiiie et 58
5.1 Model Training Performance (LSS CUIVES)ccvvvveiiiriiieiiiiiiie e 58
5.2 Detection and Tracking Performance Metricscooovvveiiiiiiieiiiiiie e 59
5.3 Qualitative analysis of the model.............ccoviiiiiiiiii 60
5.4 Important Fine-tune conSiderations.............uuveeirireieeiriirriee et eree e 62
5.4 Prototype Application DemOnNStrationcceiiirreeeiiiiiiee e 63
5.5 Discussion of LIMItationscccceviiiiiiiiiiiiiin i 65

6. Practical Application and Impact ANalysSiS.........cccuvveeiiiiiiiiiiiiiiiiiiiiee e 66
6.1 The Role of Traffic Volume in Infrastructure Degradationccccvvvveeeeiiininnnne. 66
6.2 Predictive Maintenance Framework............ccccvviiiiiiiiiiiii 67
6.3 Case Study: Traffic Context in Portugal...........ccccceeviiiiiiiiiiiiiiii e 67
6.4 Integration into Smart Urban ECOSYSIEMSuvvviiiiiiiiiiiiiiiiiiiieee i 68
6.4.1 Real-Time Traffic Monitoring and Road Degradationcccccceeviiiiiiininnnnn. 68
6.4.2 Predictive MaintenancCe.coiurreieeiiiieeeeiiiee et 68
6.4.3 Smart City INEEIationciiieiiiiiiiiiiiiiie et 69
0.4.4 CaSE STUAIESeveeeiiiiiiiee ittt 69
Future DiIrectionscccveviiiiiiiiiiiiiciiic e Error! Bookmark not defined.

7. Conclusion and Future WOorkcooiiiiiiiiiii e 70
7.1 Synthesis 0f CONIIDULIONSuvveieeiiiiiie e e e 70
7.2 Implications for Urban Planning and Traffic Management.............ccccccooviviveennnnnnn. 71
7.3 Challenges and Future Research DIireCtionsccooviverieiniiiiieeiiiiiee i 72
BIblIOGIapRy ... 75
AAPPEIAIX ettt e e e r e e e b e e e e e bt e e e b e e e e e 81

IX

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

List Of Figures

Figure 1.1: Method for Applying Al in vehicle classification...........c.ccoovvviiiiiniiicniinennn. 6
Figure 2.1: Components of Intelligent Traffic management System, adapted from (Saini &

Sharma, 2025).....eeeiiieeiii e 10
Figure 2.2: Application of CV techniques for different urban planning tasks. 12
Figure 2.3: Process of a convolutional neural network............c.cocveviiieiiiiiiiii i 14

Figure 2.4: Convolutional Neural Network (CNN) architecture (Abubakr et al., 2024) . 15
Figure 2.5: Distinction between a fully connected layer and dropout layer (Zhao et al.,

2024) e ettt e ettt e tr e e rae e e nnaeeeanreeeanren 17
Figure 2.6: Data flow diagram for image classification (Zhao et al., 2024). 18
Figure 2.7: Example of labelled and unlabelled data. From (Serrano, 2021)................... 19
Figure 2.8: Two-stages detectors (Zhao et al., 2024)..........c.cccoeiiiiiiiiiiii 20
Figure 2.9: One-stage detector, from (Zhao et al., 2024).............cccoooiiiiiiiiiiiie e, 20
Figure 2.10: R-CNN Architecture(Neha et al., 2024)........cccccooviiiiiiiiii e 20
Figure 2.11: Fast R-CNN architecture (Neha et al., 2024)..........ccccccoiiiiiiiiiiii e 21
Figure 3.1: Development approach............ccoooiiiiiiiiiiii e 27
Figure 3.2: Component diagram of the real-time vehicle tracking system (Frontend,
FastAPI backend, vision pipeline, sources, and Outputs).........cccceeevvvrvviieiieeeeenniiiiiiiieeeenn. 31
Figure 3.3: Main sequence of operations from user action to real-time processing and

105 010) 4517 PO PU PP PTPPPPPP 32
Figure 3.4: Computer vision pipeline for the system.cccccvviiiiiiiiiiiiiii i, 42
Figure 4.1: HOW 1t WOTKS....cooiiiiiiiiiiiiie ettt 52
FAgure 4.2: SySteIM SELUD. «.ieviiiiiiiiiiiiiie e e ettt e e e e e a e e e e e e s bbb e e eaeeas 53
FAigure 4.3: USer INLETTACEoiiiiiiiiiiiiii ettt e e e e e ba e e e as 54
Figure 5.1: Loss curve evaluation graphics and precision evaluation graphics. 59
Figure 5.2: ByteTrack performance evaluation.ccccuvvvviiiiiiiiiiiiiiiiiiiieeee i 60

Figure 5.3: Metrics comparison Yolo1n.pt and the mixed model dataset. . Error! Bookmark
not defined.

Figure 5.4:Santo Ovidio's MEtro Station (@).........ccorvurrreeriirirreeriiieie e siier e e e e e e 61
Figure 5.5: Santo Ovidio's Metro Station (D).ccovieereeiiiiiiieeiiiiiiee s 62
Figure 5.6: Vila Nova de Gaia, Canelas, A29..........cccviiiiiiiiiiiiiiiieeeee e 62
Figure 5.7: Prototype webpage demonstration.cooiuvrieeriiiireeiiiiieee e 64

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

List Of Tables

Table 2.1: Elements of COmMPULEr VISION.cccuvviiiiiiiiiiiiiiiieiiiie i 13
Table 2.2: Quantitative Performance Comparison of Object Detection Models on different

Dataset (Zhao et al., 2024). ...ocviiiiiiiiiiiiee e 21
Table 2.3: Overload ESAL and W18 values calculation for 2021, from (Putri et al., 2024) 22
Table 2.4: Related WOTK SUIMIMATY.vviiiiiiiiiiieeiiie et 25
Table 3.1: Functional requirements of the SYSteMcciivveriiieiiiieiiieee e 28
Table 3.2: Non-functional reqUIr€mMENtS.ccoiiimiiiiiiiiiie e 28
Table 3.3: DOMAIN TEQUITEINENESeeeiirrrieeiiireieeeriree e e e srre e e s snrre e e s s e e e s e e s e e e s e 28
Table 3.4: Core Domain Models and Runtime Components SUmMmary.................occvvveennnne 36
Table 3.5: Technologies and tOOIS.ooeoiiiiiiiiii e 38
Table 4.1: Datasets COMPATISON.ocurriiiiiireiee i e e e e e e e e s e e e nnnes 48
Table 4.2: Hardware speficifications.ccvviiiiiiiiiiiiiiie e 50
Table 4.3: Software SPeCIIICAtION.oc.vreiieiiiiiee e 50
Table 4.4: Prototype essential toOlS.coooviiiiiiiiiiiii e 53
Table 4.5: SUCCESS CIIEETIAuuvvvvriieieeeeeeiiiiiee et e e e e e e e s ettt e e e e e s st r e e e e e e e s s nb bbb e e aeaeeeeaann 56
Table 5.1:Metrics comparison YoloIn.pt and the mixed model dataset,............ccccceveeeennns 61

XI

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Acronyms

AAT — Average Annual Traffic

ADT — Average Daily Traffic

Al - Artificial intelligence

BDD100k — Berkeley Deep Drive 100K
CNN — Convolutional Neural Network
COCO — Common Objects in Context
CQRS — Command Query Responsibility Segregation
CPU — Computer Processing Unit

CV — Computer Vision

DDD — Applying Domain-Driven Design
DM — Deep Learning

DSR — Design Science Reasearch

ESAL — Equivalent Single Axle Load
FPS — Frame Per Second

GPU — Graphic Processing Unit

IDF1 — Identity F1 score

ILS — Image Labeler Suite

[oT — Internet of Things

IoU — Intersection over Union

ITMS — Information Traffic Management System
ITS — Information Traffic System

LHR - AAT

mAP — Mean Average Precision

ML — Machine Learning

MOTA — Multi Oblect Tracking Accuracy
NLP — Neural Language Processing

OSE — Onthological Search Engine
ReLU — Rectified Linear Unit

REST — Representational State Transfer
RCNN — Recursive CNN

SPP — Spatial Pyramid Pooling-Net

SSD — Single Shot MultiBox Detector
UI — User Interface

VDF — Vehicle Damage Factor

YOLO - You Look Only Once

XII

1. Introduction

1.1 Context

Modern urban environments face increasing challenges related to traffic congestion, road
safety, and the timely maintenance of infrastructure. As vehicle density rises and cities grow
more complex, traditional traffic monitoring systems often fail to provide real-time, accurate
data necessary for efficient urban management. To address these gaps, advanced sensor
technologies are being adopted such as those used by the U.S. Department of Transportation,
(2024) to monitor cracks and structural weaknesses in bridges—enabling early detection,
timely repairs, and the prevention of catastrophic failures while improving safety, reducing
costs, and extending infrastructure lifespan. In parallel, integrating Al-powered image
recognition for vehicle identification offers a powerful solution, by enabling real-time traffic
flow analysis, early detection of road degradation, and more effective urban planning (D1

Grande et al., 2024)

Artificial Intelligence (AI) has evolved to revolutionize industries and societies
worldwide, particularly through the advent of machine learning and deep learning. Computer
Vision (CV), an integral component of Al, endows computers with the capability to analyse
and extract information from visual data, such as images or videos, thereby opening new
frontiers for image processing and analysis across many disciplines (Marasinghe et al., 2024).
The primary objective of this work is to develop and evaluate an Al-driven image recognition
system capable of accurate vehicle detection, classification, and tracking. This system is
designed not only to optimize traffic management but also to support predictive infrastructure
maintenance by calculating traffic-induced road degradation through Equivalent Single Axle
Load (ESAL) metrics. By leveraging a YOLO-based model trained on the mixed dataset
(COCO+BDD100k), this research aims to demonstrate a practical, scalable prototype that

transforms visual data into actionable insights for smarter urban ecosystems.

As new concepts are being embraced, like smart cities, which are Al driven systems
presented in form of smart traffic lights, noise or air quality prediction, and foot traffic as
well as car traffic prediction faculties, the integration of Al technology with urban planning
practices presents an opportunity for urban planners to enhance their capabilities to analyse

2

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

large urban datasets, recognise patterns and trends, and make informed predictions through
modelling and simulation (Marasinghe et al., 2024). Urban space as a dynamic system,
composed of human and commercial activity, flows of energy and matter, and their
interactions, can no longer be analysed as a static space built of structures and roads. In the
rapidly evolving landscape of our modern digital society accompanied by Al opportunities,
an intelligent city is a beacon for a transformative endeavour that modern smart cities all over
the world are set to embark upon (Kourtit et al., 2024). Exploring Al techniques to detect,

classify and identify these dynamics is particularly important.

1.2 Motivation

In the realm of urban planning and traffic management, accurate car identification can
revolutionize how we plan cities, handle traffic flow, detect violations, manage congestion,
and anticipate infrastructure maintenance. According to Liao, (2022), the constant
improvement of the country’s road infrastructure, the road surface is influenced by
environmental factors, including temperature, traffic load, weathering, which gradually
reduce the pavement structure's strength, eventually leading to various disease characteristics
(such as cracks, rutting, potholes, etc.). With the development of computer vision and deep
learning, image classification, object detection, and segmentation techniques have been
widely employed in the detection of road pavement damages (Ren et al., 2024). Urban
planners can leverage this technology to analyse traffic patterns and vehicle usage, leading

to better infrastructure development and resource allocation.

The potential for improving operational efficiency, safety, and planning underscores the
importance of advancing Al-based car identification systems. Moreover, the dynamic nature
of urban environments necessitates robust and adaptable Al models capable of functioning
under diverse conditions. From varying lighting and weather conditions to different vehicle
angles and occlusions, the need for resilient Al solutions is quite clear. Clearly, in the modern
era, as we recognize the complexities of urban life, the pursuit of enhancing the quality of
life in cities and their neighborhoods has taken center stage (Kourtit et al., 2024). Developing
such solutions requires not only sophisticated algorithms but also extensive and diverse

datasets to train and validate these models. The motivation for this study is driven by the

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

transformative potential of Al in image recognition, specifically car identification. By
addressing the inherent challenges and leveraging advanced Al techniques, this research aims
to contribute significantly to the fields of urban planning and traffic management and enhance
the accuracy, efficiency, and applicability of car identification systems, thereby driving
innovation and improving societal outcomes. With this, the research question comes as: How
can Al-powered vehicle image recognition enhance urban planning strategies for traffic
management in cities? So, this study aspires to reach the forefront of this transformative
journey, providing insights and advancements that will help shape the future of urban

management and transportation safety.

1.3 Purpose

To respond the question from previous section, the primary objective of this dissertation
is set to explore and enhance the application of Artificial Intelligence (AI) in image
recognition, aiming to implement a robust Al model capable of accurate and efficient car
identification under diverse conditions, resorting to Convolutional Neural Network (CNN)
architecture and the most recent technologies tailored for object identification, also discuss
concrete cases on early detection of infrastructure degradation. The global and detailed

objectives go as follows:

Global Objective

The general objective of this dissertation is to explore, implement, and evaluate the
application of Artificial Intelligence (Al) in image recognition, with a specific focus on real-
time car detection, classification, and tracking. The goal is to train a robust Al-based system
that operates efficiently under diverse environmental conditions, contributing to

advancements in traffic management and urban planning.
Detailed Objectives
1. Model training and Enhancement:

a. Implement an Al model based on Convolutional Neural Network

(CNN) architecture and the latest object detection technologies.

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

b. Address challenges in object identification, including variability in car

appearance (colour, modifications).
2. Performance Optimization:

a. Explore techniques to mitigate environmental factors such as low

lighting, occlusions, and adverse weather conditions.

b. Improve the model's ability to differentiate between visually similar

objects.
3. Evaluation and Validation:

a. Conduct thorough evaluation using up-to-date datasets, such as
Cityscapes, Waymo or BDD100k , to ensure accuracy, precision, and

robustness in real-world scenarios.

b. Measure performance using relevant metrics, such as mAP (mean
Average Precision), MOTA (Multi-Object Tracking Accuracy), and FPS

(Frames Per Second).
4. Practical Application:

a. Investigate the practical implications of Al-based car detection and
classification systems in enhancing urban planning, aiding traffic

management, and anticipate road degradation.

b. Analyse integration strategies for deploying the system in real-world

environments, ensuring scalability, reliability, and ease of adoption.
5. Real-Time System Implementation:

a. Develop a web-based interface for real-time visualization of car
detection and tracking, enabling live monitoring of traffic flow and vehicle

categorization.

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

1.4 Method

To achieve the objectives outlined in this dissertation, a systematic and comprehensive
approach will be employed. The method encompasses several stages (Figure 1.1), from data
collection and preparation to model training, evaluation, and application analysis. Each stage

is critical to ensure the robustness and effectiveness of the AI model for car detection.

Vehicle Data Collection and Preparation l
AT Model Training l

Evaluation Metrics

Addressing Challenges

Practical Applications and Implications

Figure 1.1: Method for Applying Al in vehicle classification

By employing these methodologies, this dissertation aims to implement a robust and
effective Al model for car identification, addressing key challenges and demonstrating
practical applications that can enhance urban planning in terms of transportation and traffic

management.

1.5 Structure of the document

This work is organised into seven chapters. The first chapter presents the purpose of the
dissertation, its context, motivation and the process to achieve the desired results. The second
chapter focuses on the state of the art, presenting the background of Al, the basic concepts
and explanation on how it works, a brief history and classification of artificial technologies
considering the capabilities and their components regarding human dissimulation. The
second part of the chapter presents the core of Al, approaching machine learning in general,
then diving into deep learning with the concepts, theoretical foundation and evolution to
neural networks, convolution and recurrent neural networks. The same chapter delves into
image recognition, explaining the key features of this work, image detection and
classification, from the concepts, process, to the technologies that support this essential part

of Al known as computer vision. The last section of the chapter is presented in resume the

6

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

most relevant related works from articles, opinions, technologies blogs and tendencies

presented by the giants on Al.

The third chapter of the work explains the general methodology applied to the goals here
proposed, presenting the requirements of the system, technologies and tools. As for the fourth
chapter, focuses on the experimental setup, from training the model to be used in the

prototype and the evaluation through performance metrics observation.

In the last chapters, it is presented the discussion, practical application and the conclusion,
analysing the inherent performance metrics and the limitations, considering the objectives of
the work. Moreover, and an approach on the practical application and impact analysis of Al-
Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management.

Then, the conclusion of the work and suggestions for future works.

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

2. Artificial Intelligence in Urban Planning and traffic
management

In this chapter, a brief context is presented on Artificial Intelligence, from historical
reference to the theoretical foundation to properly understanding how Al supports urban

planning through image recognition.

2.1 Artificial Intelligence and Its Role in Urban Planning

Urban planners are increasingly using artificial intelligence (Al) to optimise the design
and management of cities, improving decision-making in urban planning (Ponce et al., 2023).
These optimisations and management that resorts to the use of Al, bring new concepts in our
way of life; smart cities, which englobes land use optimisation planning, population growth
prediction, transportation planning, traffic management, environment sustainability, and
infrastructure disaster response and prevention. Central to the development of these smart
cities are Big Data and Artificial Intelligence (Al), two transformative technologies that offer

new ways of managing and analysing urban environments (Ejaz et al., 2025).

Current Al development focuses on five main areas of human dissimilation: Human
learning processing, represented by machine learning (ML); Human thinking processing,
represented by data mining (DM), Human vision, represent by computer vision (CV), Human
language and conversation, represented by Natural Language Processing (NLP), and Human
knowledge — represented by Ontological-based Search Engine (OSE) (Lee, 2020). However,
Al applications in urban planning rely on Machine Learning, Computer Vision, Natural

Language Processing, Predictive Analytics, and additionally Automation and Optimization.

In cities, ML models are used to predict traffic flow, forecast energy usage, or identify
areas at risk of crime. As more data is collected, Al models continuously improve their
accuracy and efficiency (Ejaz et al., 2025). Al-driven predictive analytics helps mitigate
climate change impacts and urban inequalities by forecasting disasters, infrastructure risks,
and socio-economic trends for proactive planning. Moreover, researchers emphasizes its
effectiveness in forecasting congestion, optimizing the movement of vehicles, and promoting

more flexible transportation networks (Igorevich Rozhdestvenskiy & Poornima, 2024).

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Computer vision (CV), an integral component of Al, can be defined as a technological field
that endows computers with the capability to analyse and extract information from visual
data, such as images or videos, thereby opening new frontiers for image processing and
analysis across many disciplines (Marasinghe et al., 2024). It helps with the extraction of
useful information from image and video data, for better comprehension of our environment.
Cutting-edge urban research has employed modern tools including social platforms, mobile
devices, sensor networks, and street-level imagery to gather more extensive datasets and
study city dynamics. CV applications in urban planning rely on various types of data sources,
such as satellite imagery, street view images, photographs, social media images, video data,
and so on, used to identify and understand urban patterns, dynamics, character, growth, land
use change, and socioeconomic challenges (Marasinghe et al., 2024). Automation and
Optimization: Al can automate routine urban tasks, such as traffic signal control or waste

management, by adjusting systems based on real-time data (Ejaz et al., 2025).

In addition, according (Ejaz et al.,2025) effective infrastructure management is crucial for
ensuring cities function efficiently. By implementing predictive maintenance through real-

time monitoring of infrastructure such as roads, bridges, and others distribution systems.

2.2 Artificial Intelligence for traffic management and Smart Cities

The transportation sector is one of the major sectors of the smart city, and over the past
several decades, there have been widespread traffic-related issues due to the fast population
growth and the corresponding rise in the number of vehicles (Saini & Sharma, 2025). Modern
cities explore the capabilities of Al for enhancing traffic and transportation systems. From
predictive algorithms to smart traffic lights, Al systems offer the potential to optimize traffic
flow, reduce delays, and enhance commuter experiences (Francisco et al., 2024). According
(Ogunkan & Ogunkan, 2025), Singapore and New York City have implemented Al-driven
systems for Real-time traffic optimization , and have achieved good results, reducing

congestion and improving mobility.

Intelligent traffic management is applied in transportation to regulate and maintain the
flow of vehicles and people, to avoid congestion, accidents and other inconveniences in

transportation. Intelligent Transportation Systems (ITS) have started to incorporate Al for

9

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

better traffic signal optimization, improving vehicular flow at intersections, where studies
have demonstrated a 25% reduction in congestion through reinforcement learning-based
adaptive traffic lights (Francisco et al., 2024). The main domains of these systems are as

follows:

/ T 1. \\\
Traffic

/
/

. Speed
\\Predictio//
] h T /’/ Traffi 5\"\
[6. Smart / Congesti
\ Parking \ on

- . Predi ct)‘i//

h ~—_ - -~ /’ \ o
‘ DOMAINS \

| OF ITMS

//' 5.\ — //// 3. \\\
[Vehicle ; Traffic
Classifi | \ Predicti

'\\ . Vi o /
_f atio n yd 47, Rapid. AN on e
Detection '

of |

. Accidents |

\ . /

-\\/ Incident /

Figure 2.1: Components of Intelligent Traffic management System, adapted from (Saini & Sharma, 2025)

Smart traffic management systems leveraging Al and IoT are transforming urban mobility
by addressing key challenges like congestion, accidents, and inefficient parking. In Saini &

Sharma (2025), is highlight several implementations of ITMS as presented on Figure 2.1:

- Traffic speed prediction, where Al algorithms, such as those in Singapore’s Smart
Mobility 2030 program, analyze real-time data to optimize traffic flow, reducing delays

during peak hours.

- Traffic congestion prediction systems, like Los Angeles” ATSAC, use IoT sensors and
machine learning to anticipate and mitigate bottlenecks, cutting peak-time delays by up to

13%.

10

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

- Incident detection and classification, where Al-powered systems, such as New York
City’s Connected Vehicle Pilot, quickly identify accidents or disruptions, improving

emergency response times and minimizing road hazards.

- Smart parking solutions, like Barcelona’s loT-enabled app, guide drivers to available

spots using real-time data, reducing unnecessary circling and lowering emissions by 30%.

- Traffic prediction models, such as those in Beijing and Amsterdam, forecast vehicle

flow and adjust signal timings dynamically, shortening travel times and easing congestion.

- Vehicle classification technologies, including automated license plate recognition
(e.g., NYC’s toll system) and Al-powered cameras (e.g., Shenzhen’s traffic monitoring), help

enforce regulations and streamline toll collection, enhancing efficiency.

Al systems help build accurate data by monitoring the volume of traffic, vehicle flow
density and the environment and infrastructural impact of vehicles on the roads. Al analyzes
the necessary data to predict when maintenance is required, supporting studies like (Wubuli
et al., 2025), on determining of preventive highway maintenance, (Faqih Seknun et al., 2025)

on assessment of road maintenance to reduce potential environmental damage, and more.

2.3 Machine learning and Computer Vision

The field of computer vision has experienced significant growth due to the proliferation
of machine learning technologies (Zhu & Shen, 2025). Computer Vision is about how
computers deal with images, using the most advanced of machine learning features like deep
learning, to perform tasks such as image processing, image classification, object detection,
object segmentation, image colouring, image reconstruction, and image synthesis. Computer
Vision techniques are widely applied across urban research, with methods tailored to specific

study goals, as we can see in Figure 2.2.

11

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

. 1 Classification | Detecrigy,
aenation s Re, gy,
- ‘:\':\ On /
__ Tracking, Prediction | opy.
(actio™ ! 5 Usteripy,
hy
& ne 1
W\S Labetling. TAgeing | Ogp.,
A% N 4
O N
\\((‘ \\\‘\ lél)/
S & ﬁ‘rf
o & . U Z
e§ & e be &U ndersra,,d Spa e
F ¢ o0 atysing, Measur, , “ce 5, %
S 9 & P B : Z %
g Mappin® & Fredic, , Q% %
x & ~ : 4 g 73
hd & & % =
IS & & & % =
= S & & 2 % >
o & & @Q [Z =
& 5] g > %, (,) =
s & & ¥ % % % g
= 5 8 S %% e 2 2
X S g -) 3 2 o]
x! ¥ =l T - © Q S €
S 5 C s s O 2]
N g 2 5 3 Z 2
= o~ -= -, - -
] 2 g ﬁ' % e)
o 2 [= (3 e =3 e
5 & £ 3 CV Techniques = 5 5
= = 2 2 - o g
g 3 = ol 3 = = G
E 3 S > in Urban £ .
i 3 2 : :
] Planning 8 5
- -— (3
Z 3 2 2
g = &
=
~
- ~
A % §
% % &
= 9/;[g
g % i &
2% 4 &
9 0 &
= ’f$ e # &
% % &
R B
% % &
% ; ¢
g Q
N %, Wb &
%, I”f‘y ., Ao Ol ~
’9,/, a J;)Z ", Lleg YR ap \%\'\\‘.\‘ \ o« o
> 2 | & o .o
% 2 %y, Ok) e Q\c“\\. _s\‘\s._.
U ey o . < g\)\‘ \\\»,
Ty /’Iu Wi ol 1\\‘c \;\‘\\
ongy,, O Classifica"® 2

Figure 2.2: Application of CV techniques for different urban planning tasks.

Among these, in monitoring and evaluating, we have the essential task for this work:

- Image classification and detection algorithms for issue identification and data
analysis.

- Object tracking for monitoring in implementation/evaluation phases.

- Scene classification and feature extraction for diverse analytical purposes, enable
robust extraction of spatial and behavioral insights from visual data, supporting

various stages of urban planning.

12

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

According to (Cernadas, 2024) computer vision applications involve the integration of

elements such as in the table 2.1:

Table 2.1: Elements of Computer Vision.

Support for | Type of input | Machine vision- Type of Experimental
data recording data related aim of the processing testing
application
Microscopes; 2D images, | Detection or | nonlearning- | Datasets
UAVs; videos, radar, | recognition, image | based
satellites; LIDAR segmentation, image | methods,
robots; MRI, X- classification, 3D | learning-
ray, and CT modeling or | based
devices; and reconstruction, methods, and
others object tracking, | hybrid
defect detection, | methods
object counting or
measurements from
images, and visual
inspection, among
others.

Machine learning encompasses three primary approaches: supervised, unsupervised, and
reinforcement learning. Supervised learning uses labeled data to make predictions, with
techniques like linear regression modeling straightforward relationships, and nonlinear
regression handling more complex patterns. Unsupervised learning, in contrast, works with
unlabeled data to uncover hidden structures through clustering (grouping similar data points),
dimensionality reduction (simplifying data while preserving key features), and generative
models (creating new, similar data). Finally, reinforcement learning operates on a trial-and-
error basis, where an agent learns optimal actions by interacting with the environment and
receiving feedback in the form of rewards, making it ideal for applications like game Al and
robotics. Together, these methods provide powerful tools for extracting insights and building

intelligent systems across diverse domains.

2.4 Deep Learning

Deep Learning(DL) is a branch of Machine Learning that focuses on artificial neural
networks with multiple layers of interconnected neurons (Krauss, 2024), and the depth is
defined by the numbers of layers. As in the brain, the neuron is also the fundamental
processing unit in many areas of Al (Krauss, 2024). In recent years, deep learning (DL)

13

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

models have yielded a new generation of computer vision methods, such as convolutional
neural networks (CNN) and transformers. CNNs are employed to analyze traffic image feeds,
detecting congestion by recognizing patterns such as vehicle density, movement, and speed,
making them effective for spatial pattern recognition in traffic data (D et al., 2025), and have

become the standard DL-based approaches for many recognition tasks.

2.4.1 Convolutional Neural Networks

Convolutional neural network (CNN) uses weight sharing strategy to explore similar
structures that occur in different locations in an image. Through sharing the convolutional
weights locally for an entire image, this drastically reduces the amount of parameters that
need to be learned and render the network equivalent with respect to translations of the input
(i.e., the number of weights no longer depends on the size of input image) (Jiang et al., 2019).
In CNN, convolutional layers work by gathering the input data, then filtering to detect
specific features like edges, corners, or textures. Then a complete check on the data for
similarities with the filters, the convolution process, producing a matching table or feature
map. Then, the results are passed through an activation function that decides which patterns
to keep.

Xt = oWy x X' + bf)
Formula 2.1

The formula says: take the input X', apply the convolution W}, add the bias b}, and
pass it through the activation function o to get the next layer's output X:*1. As we can see

summarised in Figure 2.3.

Pass theresults
through a functionto >
decide which patterns

matter.

Repeat for deeper
layers to learn more
complex features.

Slide kernels over the >

input. Detect patterns. [—>

Figure 2.3: Process of a convolutional neural network.

The basic architecture of a convolutional neural network is shown in the figure below.

14

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Reduced size of

Input (detect the Feature map images with
presence of a set of keeping
features in the images (image + filter) important
received as input by characteristics

convolution filtering)

Convolution + pooling layers

fully connected layer determines
the relationship between the
position of features in the image
and a class

Output classes

Convolutional layer Pooling layer Fully connected layer
Figure 2.4: Convolutional Neural Network (CNN) architecture (Abubakr et al., 2024) .

The core component of CNNs is the convolutional layer, which is always at least their
initial layer (Abubakr et al., 2024). As presents the figure 3, CNNs start with the convolution
layer, applying a filter (kernel) to the input image. This kernel strides over the image, block
by block, where each block is a collection of pixel cells. During this process, it performs
matrix multiplication, which results in a lower resolution image. Typically, a CNN is
structured in two main sections, feature extraction and the classification process. A basic
CNN for classification task is made up by a convolution layer, Pooling layer, Activation

function, Batch normalisation, Dropout, Fully connected layer.

Pooling layer: In short, the pooling procedure, like the convolution process, can be
thought of as a pooling function without weights, in which the input feature mapping group
is divided into many regions and each area is pooled to yield a value as a generalisation of

this region (Zhao et al., 2024).

Activation function: An activation function called a rectified linear unit (ReLU) is one of
the most popular DL activation functions that addresses the problem of vanishing gradients
and adds the property of nonlinearity to a DL model (Abubakr et al., 2024), it is a
mathematical operation applied to the output of a filter. It serves a crucial role in neural
networks by enhancing their representational power and learning ability. In a neural network,
each layer’s input and output involve a linear summation process, meaning the output of one

layer is essentially a linear transformation of its input. The activation function’s primary goal

15

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

is to provide the model with the nonlinearity property (Abubakr et al., 2024). This enables
the neural network to approximate complex nonlinear functions, expanding its applicability

to a broader range of nonlinear problems.

Batch normalisation: The whole idea of gradient descent is to minimise the objective
function by iteratively updating the parameters in the opposite direction of the gradient of the
objective function (Zhao et al., 2024). Gradient descent is an optimization technique that
minimizes an objective function by iteratively adjusting parameters in the opposite direction
of its gradient (since the gradient points in the direction of steepest ascent). The algorithm
works by randomly initialized parameter value, then compute the gradient of the objective
function at that point. Update the parameters by moving in the negative gradient direction,
and repeat this process until the function value converges (changes negligibly) or a

predefined iteration limit is reached.

Dropout: it is a regularisation technique that improves generalisation by randomly
deactivating network units or connections with a fixed probability during training. This
process creates multiple "thinned" network variants, and the resulting trained network, with
its optimized weights, serves as an effective approximation of the ensemble of these variants

(Figure 2.5b).

Fully connected layer: A fully connected layer is a global operation, unlike convolution
and pooling, and is usually used at the end of a network for classification. Each neuron in the
fully connected layer connects to all neurons in the previous layers (Figure 2.5a). After
convolution and pooling extract sufficient image features, the fully connected layer handles

classification.

16

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

{a) Fully connected layer (b} Dropout layer
Figure 2.5: Distinction between a fully connected layer and dropout layer (Zhao et al., 2024)
Typically, CNNs flatten the final feature maps into a vector, which is then passed to a fully
connected layer and output layer for classification. For instance, in a three-class image
problem, the output layer would have three neurons. The fully connected layer also combines

local, class-specific features from earlier convolution or pooling layers

In summary, CNNs process data through five key layers; pooling summarizes feature map
regions, activation functions introduce nonlinearity for complex pattern learning, batch
normalization stabilizes training by optimizing gradient descent, dropout prevents overfitting
through random neuron deactivation, and fully connected layers integrate features for final
classification; all working together to enable efficient extraction, transformation, and

classification of hierarchical features from input data."

2.4.2 Image classification

Image classification is an algorithm that predicts a class label given an input image (Bird
& Lotfi, 2024). CNNs represent one of the most powerful deep learning approaches for image

classification. The main process of image classification includes preprocessing the original

17

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

image, extracting image features, and classifying the image using a pre-trained classifier, in

which the extraction of image features plays a pivotal role (Zhao et al., 2024).

Input image
|
Image
representations

!
CNN model

l

Predi
Calculate the error sedigited True values
values

graTient \ /

Compute the neuron Loss function

Update the
parameters

error in the network (Softmax)
layer
T No Loss value e. Whether e is

within the allowable range?

Yesi

Output image
classification

Figure 2.6: Data flow diagram for image classification (Zhao et al., 2024).

In Figure 2.6, the input image is processed by the CNN model which extracts features and
generates predicted values, these are compared to the true values using a loss function
(Softmax) to calculate the error, if the error exceeds the allowable range the model updates
its parameters by computing the error gradient and adjusting neuron weights, repeating this
process until the error falls within range, at which point the final image classification is
output. For this, it is important for the data (image) to be effectively annotated (labelled).
Where, image labelling consists in mapping visual features to semantic and spatial labels
effectively describing image content, with "label" and "annotation" often used

interchangeably in the literature (Sager et al., 2021). It comprises five steps:

1. Data Collection

2. Labelling(annotation)
3. Postprocessing
4

Quality assessment

18

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

5. Data exportation

The first step of image labelling is Data collection, which is gathering the images or
videos, depending on the data, and describing the image with sentences, keywords,
taxonomies, ontology, and others. This process can be done manually or automated by
software (Image Labelling Software - ILS), depending on the goals. The figure below

illustrates the concept of labeled data.

Labeled data Labeled data Unlabeled data
V4 ‘? Y
PELE

Dog 18 pounds 14 pounds
Figure 2. 7 Example of labelled and unlabelled data. From (Serrano, 2021)

Let us understand that annotated data is data that comes with a tag or label, and the label
can be a type or a number. As for unannotated or unlabelled data, it is the data that comes
with no tag. Assessing the quality of the labelling is important for the performance of any
supervised model, by interpreting errors and similarities to deal with bias. For this

assessment, ILS like labelme, Roboflow, and others can be used.

2.4.3 Object detection

Object detection serves as a foundational computer vision task, enabling solutions for
more advanced applications like image segmentation, object tracking, and activity
recognition (Zhao et al., 2024). In recent years, researchers have concentrated on devising
CNN-based object detectors to achieve real-time detection (A. Wang et al., 2024a). The
process goes through training a classifier to distinguish the desired object and non-desired
object in fixed-size image windows, assigning high scores to desired object and low scores

to non-desired object.

There are two classes of deep learning object detection, the two-stages methods and one-

stage methods, as we can see on the figure:

19

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

f

1. Input image

X

-
Hn_(Qr;(
»
3 T y

&
‘ / . —

Car?

<,_._.- Cat?

2. Extract region proposals

3. Compute CNN features

4. Classity

Figure 2.8: Twwo-stages detectors (Zhao et al., 2024).

o8 > o

Powm

1. Input image

Two-stages detectors

Coordinate prediction

E—

Classification prediction <

2. Extract features

(X,Y,Z).. paae

Car? NO
Cat? YES
Pig? NO

3. Predict the coordinates and

categories of objects

Figure 2.9: One-stage detector, from (Zhao et al., 2024).

In Figure 2.8, we have the basic workflow of two-stage object detectors where first an

input image is processed, then region proposals are extracted to identify potential object

locations, after which CNN features are computed for each proposed region, and finally these

features are classified to determine the object categories, demonstrating the sequential

localization-then-classification approach characteristic of architectures like R-CNN, as

shows the Figure 2.10; Faster Region-based Convolutional Neural Network (Faster R-CNN)

which is an evolution of Fast Region-based Convolutional Neural Network (Fast R-CNN) as

we can see on figure 2.11; Mask R-CNN and Spatial Pyramid Pooling-Net (SPP-Net).

9216

6% 6 x 256

~2000
Wrapped | | AlexNet/
Regions VGGNet
Selective | | 227 x 227
Search

Feature maps

4096 4096

Classification

s

o0
~N0Om

Bounding Box
Regressor

Fully Connected

Layer

Flatten Layer

Figure 2.10: R-CNN Architecture(Neha et al., 2024)..

20

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

/

Convolution
Layer

Region
Proposal
Network

—|

Proposal

—

Feature Maps

Ro1 oo

Classifier and
Bounding Box
Regressor

Figure 2.11: Fast R-CNN architecture (Neha et al., 2024).

One-stage detector

The one-stage detector, Figure 2.9, begins with an input image which is processed through

feature extraction to generate hierarchical representations, then directly predicts both the

bounding box coordinates for object locations and category probabilities for object

classification in a single unified step, increasing speed by bypassing region proposals (Neha

et al., 2024). Models like Single Shot MultiBox Detector (SSD) and You Look Only Once

(YOLO) were developed achieving a high inference speed, as we can see in Table 2.2.

However, compared to two-stage detectors, the detection accuracy is less accurate (Zhao et

al., 2024).

For comparison purposes, the table below shows the percentage of the mean Average

Precision(mAP) for different detectors.

Table 2.2: Quantitative Performance Comparison of Object Detection Models on different Dataset (Zhao et al., 2024).

Model | Type Pascal COCO | ImageNet | Open Inference Model
vOC (mAP) (mAP) Images Speed (FPS) | Size
(mAP) (mAP) (MB)

RCNN | 2-stage | 66% 54% 60% 55% ~5 200

Fast 2-stage | 70% 59% 63% 58% ~7 150

RCNN

Faster | 2-stage | 75% 65% 68% 63% ~10 180

RCNN

Mask | 2-stage | 76% 66% 69% 64% ~8 230

RCNN

YOLO | 1-stage | 72.5% 58.5% 61.5% 57.5% ~45-60 145

SSD I-stage | 75% 63.5% 66.5% 61.5% ~19-46 145

Architectures like YOLO and SSD that uses one-stage detectors, it is prioritized speed as

for they are often used in real-time applications. YOLO (You Only Look Once) has emerged

as a key player in real-time object detection, and it exceeds other models in inference speed.

21

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

It is built on cutting-edge advancements in deep learning and computer vision, offering

unparalleled performance in terms of speed and accuracy (Ultralytics, 2025).

2.5 Traffic Volume Impact on the Roads

Average daily traffic (ADT) and average annual traffic (AAT or LRH) are two types of
traffic data important in transportation planning (Putri et al., 2024). Where, according to Putri
et al. (2024), ADT refers to the number of vehicles that pass an observation point for 24
hours, while LHRT is the number of vehicles that pass an observation point for 24 hours
calculated throughout the year. The capacity of road pavement construction is in terms of the
number of repetitions (trajectories) of the load of the axis of the traffic wheel in a standard
axle load unit known as the ESAL (Equivalent Single Axle Load) unit (Solahudin & Susanto,
2025). Where, to measure the damage that truck axles cause to roads, experts use a standard
unit. This unit represents the damage from a single axle carrying 18,000 pounds (which is
about 8 tons) (Putri et al., 2024; Solahudin & Susanto, 2025), and it is called "damage value

of 1.", or Vehicle Damage Factor (VDF), essential for determining pavement thickness.

The AASHTO 1993 design method counts all the heavy vehicles that will use a road over
its lifetime (W18)). Since traffic isn't spread evenly, it uses simple rules to focus only on the
trucks in the busiest lane, which is the one that determines how thick the road needs to be.
Table 2 analyzes how different types of trucks contribute to road damage over a year, where
car is categorized by classes. Table 2.3 also considers truck load as critical factor; A single
loaded truck like a 7a does thousands of times more damage than an empty one of the same
class. This is quantified using "VDF" (Vehicle Damage Factors) and summed up into a final
"ESAL" number, which represents the total wear and tear. The key takeaway is that a small
number of overloaded heavy trucks (contributing to a total of 10,922 ESALSs) are responsible
for the overwhelming share of the pavement damage, which is equivalent to over 626,000

passes of a standard 18,000-pound axle.

Table 2.3: Overload ESAL and W18 values calculation for 2021, from (Putri et al., 2024)

Vehicle Vehicle FillEmpty | LHR LHR VDF VDF ESAL

Class Axle 2021 2021 Standard | Overload | 2021
Standard | Overload

2 11 Standard 3125 0 | 0.0005 0.0005 1.56

22

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

3 1.1 Standard 783 0 | 0.0007 0.0007 0.55

4 1.1 Standard 595 0 | 0.0286 0.0286 17.01

5a 1.2 Standard 4 0]26 2.6 10.63

5b 1.2 Standard 7 0]26 2.6 19.24

6a 1.2L Fill 976 58 | 0.3 0.64 375.32

6a 1.2L Empty 309 0]0.1 0.004 30.86

6b 1.2H Fill 438 55 15.26 1317.99

6b 1.2H Empty 153 007 0.04 107.26

7a 1.22 Fill 416 55| 10.1 11.74 4838.61

7a 1.22 Empty 165 027 0.02 44473

7b 1.2+22 Fill 36 5122 8.04 118.83

7b 1.2+22 Empty 16 014 0.01 22.62

7c 1.2-22 Fill 243 32|85 25.59 2885.36

7c 1.2-22 Empty 38 0]5.2 0.08 196.41

7c 1.2-222 | Fill 64 8133 22.66 399.95

7c 1.2-222 | Empty 13 0|25 0.11 31.64

7c 1.22-222 | Fill 10 1|47 29.97 90.78

7c 1.22 - 222 | Empty 4 0]3.2 0.18 13.08
TOTAL ESAL Overload 10922.38

Wis Overload 2021 626066.63

To determine the percentage of traffic growth (i) during the service life of a road plan

using the AASHTO (1993) method (Putri et al., 2024), we can use the following formula:

~_ ADT,
=G,
Formula 2.2

1
-1

The cumulative ESAL can be computed as:

ESAL = Z(ADTC « VDE, % Y)
Cc

Formula 2.3

Where ADT. is the Annual Daily Traffic for vehicle class ¢, VDF. is the Vehicle Damage

Factor (based on axle type and weight), and Y is the number of design years.

The remaining pavement life can be estimated as:

23

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Actual ESAL

. 08y — _Actual ESAL
Remaining Life(%) = 100(1 Design ESAL)

Formula 2.4

2.5.1 An Al & Computer Vision Approach for Vehicle Counting and
Classification

Al and computer vision system, using real-time object detection models, it identifies each
vehicle and assigns it a unique ID. Sophisticated tracking algorithms then follow each
vehicle's movement frame-by-frame, ensuring the same vehicle is never counted twice as it

passes through the monitored area.

The system classifies each vehicle into predefined categories (car, truck, bus, motorcycle)
and tracks its movement to determine traffic direction and count. Based on this classification
and the established Vehicle Damage Factors (VDFs) for each class, the system automatically
calculates the Equivalent Single Axle Load (ESAL), providing a direct metric for assessing
the pavement impact of the observed traffic flow. Additionally, the system calculates the

average speed of vehicle according to the direction of the vehicles.

Finally, all this analyzed information is automatically saved into CSV file or database.

This directly generates the traffic data needed for urban planning and traffic analyses.

2.6 Related Works

Significant research such as Zhao et al. (2024) and Neha et al. (2024), have explored the
integration of artificial intelligence (AI) and computer vision (CV) in car detection,
classification, and tracking. Studies by Yigitcanlar et al. (2020) and Abubakr et al. (2024)
demonstrate the utility of such systems in traffic flow analysis, congestion management, and
infrastructure planning. Kamrowska-Zatuska (2021) emphasized the importance of big data
mining and Al in studying dynamic urban systems, highlighting the role of image recognition
in mapping traffic patterns and enabling smart city innovations. The ANST model, developed
by Nadarajan & Sivanraj, (2022), enhances traffic forecasting by merging LSTM networks
with attention mechanisms, effectively incorporating spatiotemporal relationships and

environmental conditions for superior predictive performance. By integrating street view

24

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

images and urban networks, Yap et al (2023), assessed active mobility, leveraging deep
learning to examine the impact of traffic environment factors on subjective choices. To
contend traffic congestion on urban networks, a recent DQL framework by H. Wang et al
(2023), using partial detector inputs showed 3.9-22% improvements over conventional
methods in real-world validation. Latest study by D et al (2025) Al-based traffic systems
combine real-time data and machine learning for accurate congestion detection (94.89%
accuracy) and adaptive signal control, significantly improving traffic flow over traditional

methods.

Recent advances in vehicle recognition have been driven by YOLO (You Only Look
Once) architectures, which enable real-time object detection critical for urban traffic
management. A work by Valdovinos-Chacon et al2025) presented a YOLO-based system that
achieves 96% vehicle detection accuracy for adaptive traffic light control, demonstrating
potential for Latin American cities, combining real-time object detection with IoT
coordination to optimize intersection timing. Tracking algorithms like ByteTrack, Botsort
and DeepSORT have shown promise. ByteTrack's innovative association of low-confidence
detections demonstrates significant improvements (up to +10 IDF1) for urban traffic
monitoring, achieving real-time performance (30 FPS) with 80.3 MOTA accuracy (Zhang et

al., 2022), which is particularly valuable for smart city applications.

Table 2.4: Related work summary.

Authors Year Contribution

Zhang et al. 2022 | ByteTrack's innovative association of low-
confidence for object tracking.

Nadarajan & Sivanraj 2022 | Enhancement of traffic forecasting by merging
LSTM networks with attention mechanisms.

Abubakr et al. 2024 | Utility of Al and Computer vision in traffic flow
analysis, congestion management, and
infrastructure planning.

Zhao et al. 2024 | Integration of artificial intelligence (Al) and

computer vision (CV) in car detection,
classification, and tracking.

Valdovinos-Chacon et al. 2025 | Presented a YOLO-based system that achieves
96% vehicle detection accuracy for adaptive
traffic light control.

D et al. 2025 | Congestion detection with Al-based traffic
systems that combine real-time data and machine
learning.

25

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Table 2.4 summarizes the latest relevant contributions on vehicle recognition with Al,
however, most existing work focuses on either traffic analysis or infrastructure monitoring in
isolation. Few studies comprehensive address how vehicle recognition can directly inform
urban planning decisions for predictive roads maintenance, a gap this research aims to bridge
by developing an integrated framework that connects real-time vehicle analytics with long-

term urban development strategies.

26

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

3. System Design and Methodology

3.1 Research Methodology and Development Approach

This work employs the Design Science Research (DSR) methodology, based on De Sordi,
(2021), to design and evaluate a vehicle tracking system framework. DSR is chosen for its
focus on developing IT artifacts that solve practical organizational issues while maintaining

scientific rigor.

The implementation of DSR followed a structured three-phase development approach, as
illustrated in Figure 3.1. First, a computer vision model was trained on an annotated dataset
to establish the core detection capability. Second, this model was implemented and optimized
within a functional software prototype. Third, the system was extended to extract, analyse,

and persist useful traffic information.

Train a CV model Implement Results

Figure 3.1: Development approach

This process ensured the creation of an artifact that fulfils the need for real-time
monitoring of vehicles and road usage. The practical application of this work shows its
relevance on smart cities planning and intelligent transportation, considering that vehicle
detection, tracking and counting can help urban planning and predictive maintenance of
infrastructures by analysing the volume of traffic, improving the flow of vehicle and the

impact on the road degradation.

3.2 System requirements

To guide the development of the system, a comprehensive set of requirements was
established covering functional capabilities, quality attributes, and domain-specific
constraints. These requirements ensure the system meets both technical objectives and

practical urban planning needs.

- Functional requirements

27

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Table 3.1: Functional requirements of the system

Code Requirements Description

FRO1 Vehicle detection | The system must detect accurately vehicles on
video frames

FRO2 Object tracking The system needs to rigorously maintain identity
of vehicles across frames

FRO3 Counting vehicles | The system will define a line to count the vehicles
that cross it.

FRO5 Different data It needs to be capable of processing data from

source different sources, stream and recorded data.

FRO6 Calculate Esal The system needs to calculate daily ESAL
variable

FRO7 Save reports It needs to create a database for recording the
daily traffic volume data

FRO7 Web Interface The system must provide a web interface that

displays the processed video with the detections
and counts updated in real time.

- Non-functional requirements

Table 3.2: Non-functional requirements.

Code

Non-Functional Requirement | Description

NFRO1

Performance:

The system must process a minimum of 15
frames per second (FPS) on an Intel i5 CPU
and NVIDIA RTX 1070 GPU.

NFRO2

Reliability:

The system must maintain availability
greater than 99% during operation, with error
handling for unstable video sources.

NFRO3

Maintainability

The system must have high cohesion and low
coupling, with a maintainability index greater
than 70 (measured by tools such as
SonarQube).

NFRO4

Scalability

The architecture must support multiple
concurrent tracing sessions, with resource
isolation.

NFROS5

Low Latency

End-to-end latency (capture from frame to
display on the interface) must be less than
500 milliseconds.

- Domain Requirements

Table 3.3: Domain requirements

Code Domain-Requirements Description

DRO1 Vehicle Classes Recognize the classes: car, truck, bus and
motorcycle.

DRO2 Directional traffic analysis | Up/down for horizontal lines, left/right for

vertical lines.

28

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

DRO3 Pavement impact ESAL per class with domain-specific Vehicle
estimation Damage Factors (VDFs).
DRO04 Speed estimation Speed estimation: approximate scene-based
conversion (pixels—meters) for indicative
averages.

These requirements collectively ensure the development of a technically robust system
specifically designed for urban intelligence applications. They establish the foundation for
delivering accurate, real-time traffic analytics to support data-driven urban planning and

predictive maintenance, directly informing the architectural design that follows.

3.3 Proposed System Architecture

This section outlines the architectural structure principles and patterns adopted for the
vehicle detection and tracking prototype, ensuring a robust, maintainable, and scalable
system. The architecture is designed to align with the domain requirements, emphasizing

modularity, testability, and performance optimization.

3.3.1 Architectural Principles and Patterns

Clean Architecture

The system is designed according to Clean Architecture principles (Lano & Yassipour
Tehrani, 2023), ensuring that business rules remain independent of frameworks, databases,
and external systems. This separation improves maintainability and testability by isolating
the core logic from infrastructure dependencies. Applying Domain-Driven Design
(DDD)(Junker & Lazzaretti, 2025; Kapferer & Zimmermann, 2020), enables the creation of
a rich domain model for vehicle detection and counting, supported by a shared ubiquitous
language between developers and domain experts. The use of Command Query
Responsibility Segregation (CQRS) further enhances performance by separating read
operations (e.g., metric queries) from write operations (e.g., frame processing)
(«Implementing Command Query Responsibility Segregation (CQRS) in Large-Scale
Systems», 2024), allowing each to be independently optimized and scaled for real-time

processing.

29

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

The architecture also follows the Ports and Adapters (Hexagonal) pattern, which
decouples the application’s core from external systems such as hardware interfaces,
databases, or APIs, thereby facilitating component substitution without impacting the core
logic. In addition, the system adopts an Event-Driven Architecture, where domain events
propagate significant occurrences, such as vehicle crossings, across components. This
promotes loose coupling, extensibility, and integration with external systems, including
traffic management or analytics platforms. Collectively, these architectural patterns ensure a
modular, scalable, and maintainable system for vehicle detection and tracking, while

providing flexibility for future enhancements.

3.3.2 Structural Diagrams

Figure 3.2 shows the main components and data/control flows of the proposed system,
where the browser Ul communicates with the FastAPI backend over WebSocket for real-time
frames and metrics and via REST for configuration and exports, while the vision pipeline
(FrameReader — YOLO — BYTETrack — VehicleCounter) processes frames from
webcams, uploaded files, or YouTube via yt-dlp to produce counts, directional speeds, and

ESAL summaries.

30

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Frontend (Broufser)

index html
styles.css

r

apnds
(WebSocket client + Ul
controls)
]l T T T T T
L‘ WebSacket 150N + basaté
HTTR GET (static) POST posT/GET GET cEr | epsecket + base start_youtube(url) streamed frames + metries

PES

L -
)
l Backend [FasthPT) l

Eval Track/tracker_results.txt Static mounts POST fupload GET fcameras
FOST /set_counting_line
fstatic, /reports

; GET fget_counting_l
Jinjaz templates faet-counting.line

vi-dlp
(YouTube resolver)

axis + position

FastARI Application
(app.ov)

»

GET /export_csv

resolve direct stream URL J runtime config £Su/text ganeration tink to file
Wisiof Pipeline
- - reports/sext, &esv
FrameReater
(cv2VideoCapture, thread,
queuel

MOT lines per frame f_J l

YOLO (ultralytics)
madel.fuse + warmup
CUDA FP16 when available

BYTETrack
(ultralytics tracker)

VehicleCounter
counts, directions, speeds,
ESAL

start/stop/reset actions

counts, directions, avg
speeds, ESAL

¥ ‘v

wabSocket
fws/detect
path/LRL cv2.videoCapturetindex) spawn task
wide Sources
- v VISTON

YouTube URL ‘ | Uploaded Video

‘ Webcams / Cameo

Figure 3.2: Component diagram of the real-time vehicle tracking system (Frontend, FastAPI backend, vision pipeline,
sources, and outputs)

The component diagram illustrates a streaming-first design: frames flow from the selected
source into the vision pipeline where YOLO performs detection, BY TETrack maintains
identities, and VehicleCounter computes per-class and per-direction counts, speeds, and
ESAL. The backend serves both static assets and dynamic reports (CSV/TXT), and logs
MOT-style outputs for evaluation. The counting line can be set to auto or manual mode via

REST, and changes propagate at runtime to maintain coherent direction metrics.

31

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

The sequence traces user-initiated actions (Start/Stop, configuration updates) through the
backend’s streaming pipeline and back to the browser via WebSocket, showing the per-frame
loop and report generation, as seen in Figure 3.3.

Frontend WehSocket Backend Vision Pipeline Reports
User

$ Start / Stop / Config
Connect if needed
start(source)

control

open(source)

loop
detections + tracks

image + metrics

update UL

set_counting_ljne(axis,pos)

apply config / rpset dir metrics

stop()

stop

finished + feport URL
e

Frontend WebSocket Backend Vision Pipeline Reports

save report (CSV/TXT)

User

Figure 3.3: Main sequence of operations from user action to real-time processing and reporting.

- User initiates processing (Start via uploaded file, webcam, or YouTube) and may later

Stop or change the counting line.

- Frontend (app.js) ensures a WebSocket connection and sends simple control messages

(start/stop); REST endpoints handle configuration and exports.

- Backend (FastAPI) spawns a processing task that opens the source and runs the vision

pipeline.

- Vision pipeline: FrameReader acquires frames; YOLO detects vehicles; BY TETrack

assigns track IDs; VehicleCounter updates counts, directions, speed samples, and ESAL.

32

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

- Backend overlays, packages a JPEG frame plus metrics, and pushes them over

WebSocket; the Ul renders the image and updates the merged metrics table.

- When the counting axis/position changes, backend applies the config and resets

directional metrics to preserve semantic correctness.
- On Stop or stream end, backend saves a TXT report and supports CSV export from
/export_csv, returning a downloadable URL.

3.3.3 Core Domain Models

This section describes the main domain objects that encapsulate the business logic of

traffic counting, directional analysis, and pavement impact estimation.

1. VehicleCounter (backend/app.py):
- Purpose: Central domain service that turns tracked object motion into domain

metrics: per-class totals, direction splits (up/down or left/right), average speeds, and

ESAL.
- Core state:
= previous positions, previous_times: last known center and timestamp
per track id.
= counted ids: track ids already counted to prevent double counts.
= vehicle counts: totals per class (car, truck, bus, motorcycle).
= up down counts, left right counts, vehicle direction counts:
direction-split counts per class.
= counted speeds * (up/down/left/right/all): speeds recorded at the
moment of crossing for accurate averaging.
= motion_dx sum, motion dy sum, motion_samples: motion statistics
to infer dominant axis.
= Jast counting_ axis: last effective axis used for counting in this session.
- Behavior:

= update(track id, center X, center y, class name, counting axis,

counting_line pos, timestamp, frame dim)

33

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

e [Estimates direction along active axis; detects single crossing
per track and updates all aggregates.
e Records “counted-at-crossing” speeds and contributes to
motion statistics (dx/dy).
= get total counts()
e Returns a merged metrics view: overall totals, ESAL by class
and total, per-direction counts and ESAL, and average speeds
(overall and by direction).
= get direction counts(), reset directional metrics(),
get dominant axis(min_samples)
e Direction-aware views, safe axis switching (resets directional
aggregates), and automatic axis selection based on observed
motion.

Contract (inputs/outputs):
= Input: track id (int), object center (X, y), class name, counting axis

(‘x’|‘y’), line position (px), timestamp, frame dim.
= Qutput: optional {track id, class, direction} upon a confirmed

crossing; totals via get total counts().
Counting Configuration (runtime model):
counting config = { axis: 'X'|'y'|null, pos_frac: 0.0-1.0 }
Semantics: null axis = auto; pos_frac is normalized position. Changing the effective
axis triggers reset directional metrics() to keep direction semantics consistent.
Companion: counter.last counting_axis captures the runtime-effective axis used in
the current processing loop.
Detection/Tracking Entities (conceptual):
Detection: {box (x1,yl,x2,y2), class_name, conf}
Track: detection + stable track id assigned by the tracker, used by VehicleCounter
to compute motion and crossings.
ESAL Model (calculate esal):
Vehicle Damage Factors (VDF): car=0.0005, motorcycle=0.0001, bus=0.15,
truck=2.0.

34

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

ESAL per class = count X VDF; totals computed both overall and per direction for

maintenance planning.

3.3.4 Runtime Components

This subsection summarizes the concrete components that execute the pipeline and

expose the system at runtime.

1.

Frontend UI (frontend/)

templates/index.html: Controls (Start/Stop/Reset, Upload, YouTube, Counting
mode/position) and merged metrics table (counts, ESAL, average speeds by
direction).

static/js/app.js: WebSocket client to receive frames/metrics; sends actions (start,
start_youtube, start camo, stop, reset counts); REST for configuration
(/set_counting_line, /get counting line) and exports (/export_csv, /cameras).

static/css/styles.css: Visual layout and readability.
FastAPI Application (backend/app.py)

Endpoints:

= GET /: render UI; GET /cameras: quick camera listing.
= POST /upload: persist file; POST /set counting line, GET
/get counting line: runtime counting config.

= GET /export_csv: build CSV and return download URL via /reports.

WebSocket /ws/detect:

= Receives control actions: start (uploaded), start youtube (yt-dlp),
start_camo (webcam), stop, reset_counts.
= Streams base64-encoded JPEG frames and metrics (counts, direction

metrics, ESAL, average speeds, counting axis, last count direction).

Vision Pipeline (app.py):

35

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

FrameReader: threaded cv2.VideoCapture with a bounded queue; supports
path/URL/camera index.

YOLO (Ultralytics): loads yolo11n.pt; fuses and warms up; uses CUDA FP16 when
available; constrained by INFER SIZE and MAX DET.

BYTETrack (via Ultralytics tracker): maintains stable track IDs for counting.
VehicleCounter: translates tracks into counts, direction metrics, average speeds, and

ESAL.
Sources and Resolvers

Uploaded videos (backend/uploaded videos), webcams

(list_cameras/find _camo_camera), YouTube (yt_dlp to direct stream URL).
Reporting and Evaluation

make report_text() and make report csv(): save TXT/CSV under backend/reports,
mounted at /reports.
MOT-style lines written to EvalTrack/tracker results.txt for later evaluation.

Performance and Environment

Knobs: INFER_SIZE, JPEG_QUALITY, SEND EVERY, MAX DET;
torch.backends.cudnn.benchmark = True.
NumPy compatibility guard (1.26.x); CUDA used if available with CPU fallback.

These models form the foundation of the system, supporting extensibility for multiple

detection algorithms and counting strategies.

3.3.5 Summary table: Core Domain Models and Runtime Components

Table 3.4: Core Domain Models and Runtime Components summary.

Component | Type Responsibilities Key methods/APIs | Core data/state
VehicleCoun | Domain Track per-ID motion, | update; vehicle counts;
ter decide counting axis, | get total counts; up/down/left/right
count by direction, reset_directional m | splits;
aggregate etrics; counted_speeds_*;
speeds/ESAL inputs get _dominant axis | speeds;
last_counting_axis;
previous_positions/tim
es
ESAL Domain/utility Compute ESAL totals | calculate esal VDF weights;
calculator by class and by esal by class;
direction

36

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

esal by direction;
totals
Speed Domain/utility Robust average calculate direction | counted speeds *;
averaging speeds overall and per | speeds; speeds; window,
direction calculate average s | max kmh
peed
Counting Domain/config | Select axis and line GET/POST counting_config: axis,
config position (auto or /get_counting_line, | pos_frac
override) /set counting line
FastAPI Runtime Serve Ul, REST, and | FastAPI app; reports_dir;
service WebSocket routes: /, /upload, uploaded video path;
/cameras, last session_start/finis
/export_csv h
WebSocket Runtime Handle /ws/detect; processing_task;
control loop start/stop/youtube/ca | websocket endpoin | stop event
mera actions; push t
frames/metrics
Video Runtime Read frames, run process_video strea | INFER _SIZE,
processing YOLO+BYTETrack, | m JPEG_QUALITY,
loop update counts, draw SEND EVERY,
overlays, stream MAX DET;
JPEG counting_line pos; fps;
payloads
Detection+T | Runtime (ML) Class-filter detections, | model.track(..., model/device (FP16 on
racking tracking IDs, tracker="bytetrack. | CUDA); MOT result
per-frame MOT yaml", file
export classes=[2,3,5,7])
FrameReade | Runtime/helper | Non-blocking frame start; get; release background thread;
r ingestion (optional queue; cap
pattern)
Rendering/E | Runtime/helper | Draw draw_detections_on | CLASS COLORS;
ncoding boxes/labels/line/arro | _frame; counting line overlay
w; JPEG encode cv2.imencode
Reporting/E | Runtime/helper | Generate TXT and make _report_text; files under /reports;
xport CSV reports make _report_csv; report_url
GET /export csv

3.4 System Implementation

3.4.1 Technologies and Tools

The implementation of the system employed a carefully selected set of technologies and
tools, based on the criteria of maturity, performance, community support and adequacy to the
established architectural requirements. The selection followed the guidelines of («A
Comprehensive Guide to Al Tech Stack», 2025) for choosing a technological stack in

computer vision projects.

37

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Table 3.5: Technologies and tools.

Layer Technology/ | Version Justification Role in
Tool Architecture
Presentation FastAPI 0.104+ Superior performance, native Framework
WebSocket and async/await support Web and API
WebSocket Padréo Real-time two-way communication for | Real-time
video and data transmission. protocol
HTMLS, ES6+ Responsive Interface web and cross- Frontend
CSS3, platform interface
JavaScript
Application Python 3.10+ Broad support for computer vision and | Main
ML, clear syntax, vast library Language
ecosystem.
asyncio 3.10+ For concurrency and non-blocking I/O | Asynchronous
operations. Processing
Pydantic 2.0+ Data validation with Python types DTOs and
validation
Domain Pytorch 2.1+ ML framework with GPU support and Machine
widespread adoption in detection learning
models.
Ultralytics 8.0+ YOLO implementation, simplified Object
APIs detection
Bytrack Robust multi-object tracking algorithm | Multi-object
to occlusions and low FPS. Tracking
Infrastructure | OpenCV 4.8+ Optimized image/video processing Computer
Vision
NumPy 1.26+ Efficient numerical computation Manipulating
arrays
CUDA 11.8+ NVIDIA GPU Acceleration Hardware
acceleration
yt-dlp 2023+ Extracting YouTube streams External video
sources

FastAPI was chosen for its high performance, automatic OpenAPI documentation, native
dependency injection, and active community. PyTorch was selected over TensorFlow for its
intuitive interface, better debugging, strong research ecosystem, rapid prototyping

capabilities, and compatibility with Ultralytics YOLO.

Critical performance settings:

TORCH_BACKENDS = {
"cudnn.benchmark': True, # Optimizes convolutions for fixed sizes
"cudnn.deterministic': False, # Allows for non-deterministic
optimizations

'matmul.allow_tf32': True, # Mixed Accuracy for Operations
}

INFERENCE_CONFIG = {

'imgsz': 640, # Precision-speed balancing

38

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

"fpl6e': True, # Mixed Precision for Modern GPU
'max_det': 100, # Limit detections per frame
‘conf': 0.45, # Optimized Confidence Threshold

Moreover, dependency and environment management rely on Poetry for streamlined
dependency handling and virtual environments, Git for version control using Conventional

Commits, and pre-commit hooks for automatic code validation.

3.4.2 Applied Design Patterns

The implementation of the system incorporated several design patterns (Gamma et al.,
1994) to ensure modular, extensible, and easy-to-maintain code. The standards applied are

detailed below:

1. Adapter Pattern - Integration with external models:

class IVehicleDetector(ABC):
@abstractmethod
def detect(self, frame: np.ndarray) -> List[VehicleDetection]:
pass

class YOLOVehicleDetector(IVehicleDetector):
def _ init_ (self, model_path: str, config: ModelConfig):
self.model = YOLO(model path) # Adapts YOLO interface
self.config = config

def detect(self, frame: np.ndarray) -> List[VehicleDetection]:
Tailors YOLO results for domain
results = self.model.predict(frame, **self.config)
return self. parse_detections(results)

2. Strategy Pattern - Interchangeable algorithms:

class ICountingStrategy(ABC):
@abstractmethod
def count_vehicles(self, detections: List[VehicleDetection],
line_position: float) -> CountingResult:
pass

class LineCrossingStrategy(ICountingStrategy):
def count_vehicles(self, detections: List[VehicleDetection],
line_position: float) -> CountingResult:
Specific implementation of line crossing
pass

class AreaBasedStrategy(ICountingStrategy):

39

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

def count_vehicles(self, detections: List[VehicleDetection],
area: Polygon) -> CountingResult:
Alternative Area-Based Counting Implementation
pass

3. Factory Pattern - Flexible object creation:

class DetectorFactory:
@staticmethod
def create_detector(detector_type: str, config: DetectorConfig) ->
IVehicleDetector:
if detector_type == "yolo":
return YOLOVehicleDetector(config.model path, config)
elif detector_type == "efficientdet":
return EfficientDetDetector(config)
else:
raise ValueError(f"Unsupported detector: {detector type}")

class VehicleDetectionFactory:
@staticmethod
def from yolo result(box, track id, class_name, frame_id: int) ->
VehicleDetection:
return VehicleDetection(
detection_id=uuid.uuid4(),
track_id=int(track_id),
vehicle class=VehicleClass(class_name),
bounding_box=BoundingBox(*box.xyxy[@].tolist()),
confidence=float(box.conf),
timestamp=datetime.now(),
frame_id=frame_id

Applied Behavioral Patterns:
4. Observer Pattern - Real-time notifications:

class TrackingSubject:
def _init_ (self):
self._observers: List[TrackingObserver] = []

def attach(self, observer: TrackingObserver):
self. observers.append(observer)

def notify vehicle crossed(self, event: VehicleCrossedEvent):
for observer in self._observers:
observer.on_vehicle crossed(event)

class WebSocketObserver(TrackingObserver):
def _init_ (self, websocket: WebSocket):
self.websocket = websocket

40

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

async def on_vehicle crossed(self, event: VehicleCrossedEvent):
await self.websocket.send_json({
"type": "vehicle crossed",
"vehicle": event.vehicle.to dict(),
"timestamp"”: event.timestamp.isoformat()

})

5. Template Method Pattern - Processing pipeline:

class VideoProcessingPipeline(ABC):
def process_frame(self, frame: np.ndarray) -> ProcessingResult:
Fixed skeleton, variable steps
preprocessed = self.preprocess(frame)
detections = self.detect vehicles(preprocessed)
tracked = self.track vehicles(detections)
result = self.analyze results(tracked)
return result

@abstractmethod
def preprocess(self, frame: np.ndarray) -> np.ndarray:
pass

@abstractmethod

def detect vehicles(self, frame: np.ndarray) -> List[VehicleDetection]:
pass

Additional Creational Standards:

Builder Pattern - Complex session construction:

class CountingSessionBuilder:
def init (self):
self.session = CountingSession()

def with video source(self, source: VideoSource):
self.session.video source = source
return self

def with_counting_line(self, position: float):
self.session.counting_line = CountinglLine(position)
return self

def with_strategy(self, strategy: ICountingStrategy):
self.session.counting_strategy = strategy
return self

def build(self) -> CountingSession:

self.session.validate()
return self.session

41

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

3.5. Core Algorithms

The computer vision pipeline implements state-of-the-art algorithms optimized for the
vehicle tracking domain, following the approaches established in recent surveys (Zhu et al.,

2024). The processing pipeline consists of the following steps:

Frame YOLO .
[Acquisit] [Preprocess1] [Detectlo] [BYTEkTrac] [CoLuongtilcng] [Results]

io0n

Figure 3.4: Computer vision pipeline for the system.

3.5.1 Vehicle Detection with YOLO

YOLO (You Only Look Once) is an object detection architecture that performs real time
detection. The YOLOv11n (nano version) was chosen because it offers a balance between
speed and accuracy, essential for real-time applications. Detection is performed on each
frame, producing bounding boxes and confidence scores (Neha et al., 2024; Zhao et al.,
2024).

Technical Architecture:

YOLO_CONFIG = {

"backbone': 'CSPDarknet’, # Efficient feature extraction
"neck': 'PAN-FPN', # Feature Pyramid Networks
'head': 'Anchor-free', # Reduced complexity
'activation': 'SiLU', # Modern nonlinearity
'normalization’': 'BatchNorm', # Training Stability

Specific optimizations implemented:
class OptimizedYOLOProcessor:
def _init_ (self):
self.model = self. load_optimized model()

def load optimized model(self):
model = YOLO('yololln.pt')
if torch.cuda.is_available():
model = model.half() # FP16 for speed
model = model.fuse() # Fusion layers for efficiency
return model

42

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

3.5.2 Multi-Object Tracking with BY TETrack

BYTETrack (Zhang et al., 2022) is a multi-object tracking algorithm that associates
detections between frames using a strategy of associating high-confidence detections first
and then low-confidence detections, reducing identity switches. The tracker uses the
bounding boxes and scores provided by YOLO and associates them based on spatial
similarity (using loU - Intersection over Union) and the motion predicted by a Kalman filter.

The output is a list of vehicles with consistent unique 1Ds throughout the video.

Association Algorithm:
class BYTETracker:

def track(self, detections: List[VehicleDetection]) ->
List[VehicleDetection]:
Separates detections by trust
high_conf_dets = [d for d in detections if d.confidence > 0.5]
low_conf_dets = [d for d in detections if 0.1 < d.confidence <= 0.5]
First association: high trust
tracks_updated = self. associate(high_conf_dets, self.active_tracks)

Second association: low confidence with non-associated tracks

remaining tracks = [t for t in self.active_tracks if t not in
tracks_updated]

tracks_updated += self. associate(low_conf_dets, remaining_tracks)

Booting new tracks
new_tracks = self._init_new_tracks(high_conf_dets)
return tracks_updated + new_tracks

def _associate(self, detections, tracks) -> List[VehicleTracking]:
Uses IoU and motion predicted by Kalman Filter
cost_matrix = self._compute_iou_cost(detections, tracks)
matches, unmatched = self._linear_assignment(cost_matrix)
return self._update_matched_tracks(matches, detections, tracks)

Kalman Filter for Motion Prediction:

class VehicleKalmanFilter:
def __init_ (self):
State: [x, y, w, h, vx, vy, vw, vh]
self.kf = cv2.KalmanFilter(8, 4)
self. setup_transition_matrix()

def predict(self, track: VehicleTracking) -> np.ndarray:

43

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

self.kf.predict()
return self.kf.statePost

def update(self, detection: VehicleDetection):

Measurement: [Xx, y, w, h]

measurement = np.array([
detection.bounding box.center[0],
detection.bounding box.center[1],
detection.bounding box.width,
detection.bounding_box.height

1, dtype=np.float32)

self.kf.correct(measurement)

3.5.3 Virtual Line Counting Algorithm and Speed Average Calculation

The count is performed by means of a virtual line positioned at a fixed x/y-coordinate in
the frame (K% of the height/width of the frame). For each vehicle tracked, the central position
of the bounding box is calculated, and the virtual line has been crossed by comparing the
current position with the previous one. For instance, in case of vertical circulation, the
crossing is recorded when the vehicle's previous position is above the line and the current

one below (or vice versa, depending on the direction set).

Virtual Line Counting Algorithm:

class LineCrossingAlgorithm:
def __init_ (self, line_y: float, direction: str = "downward"):
self.line_y = line_y
self.direction = direction
self.counted ids = set()
self.track_history = {} # {track_id: [y_positions]}
def check_crossing(self, detection: VehicleDetection) -> bool:
track_id = detection.track_id
current_y = detection.bounding_box.center[1]
if track_id not in self.track_history:
self.track_history[track_id] = []

Maintains limited history

self.track_history[track_id].append(current_y)

if len(self.track_history[track_id]) > 5:
self.track_history[track_id].pop(9)

Checks for direction-based crossing
if self.direction == "downward":

return self. check _downward_crossing(track_id, current_y)
else:

44

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

return self._check_upward_crossing(track_id, current_y)

def _check_downward_crossing(self, track_id: int, current_y: float) ->
bool:
if track_id in self.counted_ids:
return False

history = self.track_history[track_id]
if len(history) < 2:
return False

Crossing: Was up, now it's down the line
previous_y = history[-2]
return previous_y <= self.line_y < current_y

Average speed calculation:

def calculate average speed(counter):

"""Calculate overall and direction-specific average speeds based on
counting axis."""
Define stopped threshold

STOPPED_THRESHOLD = 1.0 # km/h

Calculate speeds based on counting axis
axis = getattr(counter, 'last counting axis', None) or
counting_config.get("axis") or 'y’
if axis == "y":
For horizontal line, only calculate up/down speeds (counted-at-
crossing only)
speed up = calculate direction speeds(counter.counted speeds_up,
STOPPED_THRESHOLD)
speed down = calculate direction speeds(counter.counted speeds_down,
STOPPED_THRESHOLD)
relevant_speeds = {'up': speed up, 'down': speed _down}
else:
For vertical line, only calculate left/right speeds (counted-at-
crossing only)
speed_left = calculate_direction_speeds(counter.counted_speeds_left,
STOPPED_THRESHOLD)
speed_right =
calculate_direction_speeds(counter.counted_speeds_right, STOPPED_THRESHOLD)
relevant_speeds = {'left': speed_left, 'right': speed_right}

For overall average, use all counted-at-crossing speeds (fallback to
all speeds if none yet)

all counted = counter.counted_speeds_all if hasattr(counter,
"counted_speeds_all') else []

if not all_counted:

overall avg = calculate_direction_speeds(counter.speeds,

STOPPED_THRESHOLD)

else:

45

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

overall avg = calculate_direction_speeds(all_counted,
STOPPED_THRESHOLD)
relevant_speeds|['overall'] = overall_avg

return relevant_speeds

3.5.4 ESAL Calculation for Predictive Maintenance

Vehicle Damage Factors (VDFs), assumed from AASHTO 1993 table values, are applied
as follows: car (0.0005), motorcycle (0.0001), bus (0.15), and truck (2.0). Per-class
Equivalent Single Axle Loads (ESALs) are computed as ESAL class = count class x
VDF class, with total ESAL being the sum across all classes. Directional ESALs are
calculated similarly using traffic splits (up/down or left/right) to attribute loads by movement
direction. The backend aggregates ESALs by class, direction, and total, then exports CSV

and human-readable text reports including timestamps and session metadata.
ESAL calculation:

def calculate esal(counts, split counts=None):
VDF = {
"car": 0.0005,
"motorcycle": 0.0001,
"bus": 0.15,
"truck": 2.0
}
esal by class = {cls: float(counts.get(cls, 9)) * VDF.get(cls, ©.0) for
cls in VDF}
esal_total = float(sum(esal_by class.values()))

If split counts provided (e.g. up/down or left/right), calculate those
too
if split_counts:
esal by direction = {}
for direction, dir_counts in split_counts.items():
dir_esal = {}
dir_total = 0.0
for cls in VDF:
val = float(dir_counts.get(cls, ©)) * VDF.get(cls, 0.0)
dir_esal[cls] = val
dir_total += val
esal by direction[direction] = {
"by class": dir_esal,
"total": dir_total
}

return esal_by class, esal_total, esal_by direction

46

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

return esal by class, esal total

In summary, BYTETrack is implemented via Ultralytics tracking APIs (enabled by the
included bytetrack.yaml in the repository), while speed estimates are approximate and

intended solely for comparative directional averages, not legal metrology.

47

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

4. Chapter 4: Experimental Setup

4.1 Dataset Selection and Preparation

Table 4.1 illustrates the most common relatable dataset for vehicle detection in urban

scenarios, compared for training the model.

Table 4.1: Datasets comparison.

Dataset Resolution Annotations Focus Area Limitation
Cityscapes 2048%1024 | Pixel-wise, Urban traffic Limited to
object detection European cities
KITTI 1242x375 | 3D bounding | Autonomous Small dataset
boxes, object | driving size
detection
COCO Varies Bounding boxes, | General object | Not specific to
segmentation detection traffic scenes
Waymo 1920x1080 | 3D LiDAR, | Self-driving cars | Requires LiDAR
Open bounding boxes processing
Berkeley 1280%720 | Object detection, | Diverse driving | No pixel-wise
Deep Drive segmentation scenarios segmentation
(BDD100K)

In short, the KITTI dataset is more used for autonomous driving, and it has a smaller
dataset size. As for COCO, it is a general object detection dataset and not specialized in traffic
scenes. The Waymo Open Dataset is considered beyond the scope of this research. The
simplicity in managing the Cityscape dataset with its 5,000 high-resolution images and
detailed labelling, specific for autonomous driving, made it a strong candidate. However,
Berkeley Deep Drive has more diversity of scenarios and is five times bigger than Cityscape,
containing 100,000 high-quality images for vehicle classes. So, Berkeley Deep was the
choice. Also, considering that for real-time vehicle detection accuracy, the higher the image

resolution, the better for high quality training.

BDDI100K is the largest and most diverse open driving video dataset, containing 100,000
high-resolution video clips (over 1,100 hours) collected from more than 50,000 rides across
various U.S. regions, weather conditions, times of day, and scene types (city, highway,

residential). Released by UC Berkeley BAIR, it includes rich annotations on keyframes—

48

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

object bounding boxes, drivable areas, lane markings, and instance segmentation—making

it the standard benchmark for multitask perception and autonomous driving research.

Furthermore, BDD100 has the group of classes that are critical for this work: cars, trucks,
buses, motorcycles, and bicycles (Table 4.2). In addition, the focus of this dataset is real-
world traffic representation, which makes it superior to other datasets considering the

mentioned objectives of this work.

6 1021857
10 265906343777 159062

42963
10" 16505 10229 4296 6461

179

Instances

10°

10

Bus Light Sign Person Bike Truck Motor Car Train Rider

Figure 4.1: Statistics of different types of objects (from BDDI100K site).

Statistics of different types of objects.

Figure xx illustrates a balanced class of vehicles in terms of instances. Moreover, this dataset

is accessible for research purposes and has no license restrictions; it is open source.

4.2 Model Training (YOLO)

4.2.1 Environment Setup (Hardware/Software)

Experimental Environment

Hardware Specifications

The implementation was conducted on a desktop computer equipped with an Intel(R) Core
(TM) 15-8400 CPU, with 16GB of RAM and graphical interface card of NVIDIA (GeForce
GTX 1070 GPU) with 16GB VRAM. The system utilized a 1TB SSD for storage, ensuring

fast data access during training, as we can see in Table 4.3.

49

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Table 4.2: Hardware speficifications.

CPU GPU RAM Storage
Intel(R) Core
: NVIDIA
hih S | gty | G| s
: GHa : 1070 8GB VRAM

Software Specifications

Regarding the software environment, it was the operative system of Windows 11 pro,
Visual Studio Code, Python 3.11 as the programming language. The deep learning framework
used was Ultralytics YOLOv11m from the official site, with CUDA 12.1 and cuDNN 8.5.0
for GPU acceleration. Key libraries such as NumPy (1.23.5), OpenCV (4.7.0), and Pandas

(1.5.3) were used for data processing and visualization. Table 4.4 shows in resume:

Table 4.3: Software specification.

05 Python Python S:)‘l‘l’p"” DL Key CUDA
environment version . Framework Libraries and cuDNN
programming

CUDA

Windows Pviorch Python Visual Ultralytics Oliirngy’ 12.1
11 Pro t 3.11 Studio code | YOLOvlln p ’ cuDNN

Pandas
8.5.0
Virtual Environment

For the preservation of the project files and to avoid conflicts and misleading on file
reading and dependencies, an isolated virtual environment was created, using pip in the
terminal prompt of VS Code to manage dependencies. The necessaries libraries were
installed such as NumPy, Pandas, OpenCV, Pytorch. Others required packages were installed

via “pip”, ensuring consistency across different systems.
Visual Studio Code

The easy integration capability of VS Code for Python language with its Python extension,
helps on identifying errors and efficiently fix them with IntelliSense suggestions. VS Code
makes it easy to create and manage the project files. Furthermore, it is simple to implement
changes and reverse them by simply turning code into comments, which helps on controlling

the different versions and approaches used in the code.

50

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

VS Code was used to create and apply changes to the train.py file, the dataset.yaml file,

and to convert the annotation from “json” to “tx¢” format using a python customized.

Moreover, the built-in terminal also allowed me to run scripts to reorganize the dataset

folder on the easy way to process, without leaving the IDE.

4.2.2 Training Configuration and Hyperparameters

To train the model, the relevant libraries were imported, and the desired pretrained model

was loaded (previously downloaded from ultralytics site), as we can see in the code below.

Training code:

import yaml
import multiprocessing
from ultralytics import YOLO

def main():

with open('dataset.yaml', 'r') as f:
data = yaml.safe load(f)

model = YOLO('yololln.pt")
results = model.train(
data='dataset.yaml', # Path to dataset config
epochs=50,
imgsz=640,
batch=8,
device=0,
pretrained=True,
optimizer="AdamW',
lre=0.01,
patience=25,
save_period=10,
project="mixed_COCO_BDD100k",
name="expl"'

)

try:
metrics = model.val()
except Exception:
metrics = None
print('Training completed. Best model saved in
runs/detect/train/weights/best.pt")

if _name__ == '_main__':

51

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

multiprocessing.freeze_support()
except Exception:

pass
main()

Dataset configuration:
names:

- car
- truck

- bus

- train

- motorcycle
- bicycle

nc: 80
path: G:\Users\guima\Downloads\Coco # dataset root dir

train: mix_COCO_CSCAPE_BDD10@/images # train images (53,518 images)
val: COCO _vehicles val/images

4.3 Prototype Application Development

The architectural components defined in Chapter 3 were integrated into a functioning real-
time application. The validated YOLO model was deployed within the FastAPI backend,
connecting the vision pipeline (Figure 3.4) to the frontend interface. The system was then
tested using the following scenario to validate the end-to-end workflow illustrated in Figure

4.1.

Video YOLO Vehicle
—

Source Detection BYTETracker — Counter WebSocket — Ul
SFlle/ Detections Tracking Count Transmission Webpage
tream

Figure 4.2: How it works.

4.3.1 Backend (FastAPI) and Frontend (Streamlit) Setup)

To test the proposed real-time vehicle detection, tracking and counting system, a prototype
python application was created. From Visual Studio Code, it was created a backend code and
frontend code, which was hosted on a local virtual server and accessible over the local

network using Unicorn for FastAPI as the backend server for hosting the application locally

52

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

and make it accessible over the local LAN network, and Streamlit as the frontend to build

interactive data for user interface (Table 4.5).

Table 4.4: Prototype essential tools.
Tool Purpose Command

Uvicorn + FastAPI API backend or web services (fast) | uvicorn app:app ...

) Interactive dashboards/UI for data .
Streamlit streamlit run webapp.py

apps

4.3.2 Testing Scenario

As presented in Figure 4.3, it used a camera as the source of video streaming from the
street road, the video is sent to the server(desktop), the application runs on a webpage in the
same device. In this scenario, outputs such as bounding boxes, class labels, and tracking
identifiers are rendered via the web interface, thereby providing an end-to-end validation of
the integrated detection and tracking pipeline. The counting is presented in real time in the

Detection report, at the end it is summarized in a final report at the left part of the page.

Camera

Desktop with GPU used as

server and user device
Figure 4.3: System setup.

This setup which is cost-effective, was deployed without dedicated hardware, while
maintaining real-time processing compatibility with Ultralytics and FastAPIs, the interface

is presented in figure 4.4.

53

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Real-Time Vehicle Tracking

(0] -]] jEE [= T — so%

Vehicle Counts

FPS: 0
Counting Axis: AUTO | Last Count Direction: N/A

Class Total Up Up ESAL Down Down ESAL Left Left ESAL Right Right ESAL
Car 0 0 0.0000 0 0.0000 0 0.0000 0 0.0000
Truck 0 0 0.0000 0 0.0000 0 0.0000 0 0.0000
Bus 0 0 0.0000 0 0.0000 0 0.0000 0 0.0000

Motorcycle 0 0 0.0000 0 0.0000 0 0.0000 0 0.0000
Total Counted 0 0 0.0000 0 0.0000 0 0.0000 0 0.0000
Avg Speed (kmih) 0.00 0.00 0.00 0.00

Daily Traffic: 0 | Average Speed: N/Akmvh | Total ESAL: 0.0000

Figure 4.4: User interface

4.4 Evaluation Methodology

4.4.1 Performance Metrics

Real-time object detection and tracking systems must balance speed, accuracy, and

efficiency. Below are the key metrics, according (A. Wang et al., 2024b):
1. Speed (Ensuring real-time responsiveness)

- FPS (Frames Per Second): Measures how many frames the system processes per

second. >30 FPS (=33ms/frame) is needed for smooth real-time performance.

- End-to-End Latency: Total processing time per frame (including detection &

tracking). Must stay <33ms to match 30 FPS.
2. Accuracy (Ensuring correct detections & tracking)

- mAP@0.5 (Mean Average Precision at loU=0.5): Evaluates detection accuracy by
checking if predicted boxes match ground truth (IoU > 0.5). Higher mAP = better

detection.

54

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

- MOTA (Multiple Object Tracking Accuracy): Measures tracking performance by
penalizing false positives, missed detections, and ID switches. >50% is considered

acceptable.
3. Efficiency (Optimizing resource usage)

- Hardware Utilization (GPU/CPU Usage): Should stay <80% to prevent overheating

and allow multitasking.

- Power Consumption (Watts per Inference): Critical for battery-powered devices

(e.g., drones, edge Al). Lower watts = longer runtime.
Supporting Metrics

- IoU (Intersection over Union): Measures overlap between predicted and ground-

truth boxes. IoU > 0.5 is a common threshold.
- Precision: % of detected objects that are correct (low false positives).

- Recall: % of actual objects detected (low misses).

These metrics ensure real-time systems are fast, reliable, and efficient in real-world

applications.

4.4.2 Experimental Protocol

The experimental evaluation follows a structured protocol designed to ensure
reproducibility, comprehensive assessment, and practical relevance to urban planning

applications.

Evaluation Datasets and Scenarios
Primary Dataset: COCO + BDD100k

- ~50,000 high-quality urban scene images with fine annotations
- Focus on urban environments across varying conditions

- Vehicle classes: car, truck, bus, motorcycle, bicycle.

Experimental Procedure

55

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Phase 1: Quantitative Model Evaluation

1. Detection Performance Assessment
a. Evaluate trained YOLO model on validation set

b. Calculate mAP, precision, recall across all vehicle classes

c. Generate precision-recall curves and confusion matrices

2. Tracking Performance Validation
a. Process video sequences through complete detection-tracking pipeline

b. Compute MOTA, IDF1, and HOTA metrics

c. Analyse identity preservation across frames

3. Computational Performance Benchmarking
a. Measure FPS on target hardware (NVIDIA GTX 1070)

b. Monitor GPU/CPU utilization during continuous operation

c. Assess memory consumption and thermal characteristics

Phase 2: Qualitative System Evaluation

1. Visual Inspection
a. Manual review of detection and tracking results
b. Identification of failure cases and edge conditions
c. Assessment of bounding box stability and consistency
2. Use Case Validation
a. Vehicle counting accuracy in simulated traffic scenarios
b. ESAL calculation reliability compared to manual counts

c. Integration testing with web interface prototype

Success Criteria

Based on the system requirements established in Section 3.2, the following success
thresholds are defined:

Table 4.5: Success criteria

Metric Category Minimum Target Performance | Excellence
Acceptance Threshold

Detection Accuracy | mAP@50 > 0.50 mAP@50 > 0.65 mAP@50 > 0.75

56

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Tracking MOTA > 0.50 MOTA > 0.65 MOTA > 0.75
Performance

Computational FPS>10 FPS>15 FPS > 25
Performance

Counting Accuracy | > 85% >92% >95%

This comprehensive evaluation methodology ensures rigorous assessment of the
proposed system's capabilities while maintaining practical relevance to real-world urban
planning applications. The multi-faceted approach addresses both technical performance and
operational requirements, providing a solid foundation for validating the research hypotheses

and system objectives.

57

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

5. Results and Discussion

In this chapter, it will be discussed and analysed the results of the YOLO11n fine-tuning
on a mixed COCO + BDD100k dataset. The key performance metrics observed include loss
values on training and validation, mean Average Precision (mAP), precision, and recall, to

assess the effectiveness of the model.

5.1 Model Training Performance (Loss Curves)

The model was trained for 50 epochs with smooth convergence, as shown in Figure 5.1.
Training and validation losses (box) exhibited a rapid initial decline within the first 10
epochs, followed by a steady and gradual decline from epoch 10 to 50; train box loss started
at approximately 1.52 and ended around 1.26, while val box loss started near 1.35 and ended
around 1.11, indicating a consistent reduction in bounding-box regression error and improved

localization accuracy.

Classification loss for both training and validation showed a sharp drop in the first ~10
epochs, followed by a continued steady decrease through the remaining epochs; train cls loss
began at ~1.30 and ended near 0.93, whereas val cls loss started at ~1.50 and reached ~1.05
by the final epoch, reflecting strong and ongoing improvement in the model’s ability to

correctly classify vehicles.

Train and validation Distribution Focal Loss decreased smoothly and almost linearly
throughout training, both starting at approximately 1.175—1.18; train DFL ended around 1.04
and val DFL ended near 1.10. The minimal gap between training and validation DFL (and all

58

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

other losses) confirms excellent generalization with no signs of overfitting, demonstrating

stable and healthy convergence.

train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B)
—— results | 1.1757 0.60 -
1.50 4 1.3 smooth 0.75 | '
1.1501
1.45 1 1.24
11251 0.70 1 0.55 1
140 114 1.100 1
0.65
1351 104 1.075 0.50
1301 1.050 0.601 1
0.9 \
1.25 4 1.025 0.45 4
0 20 40 0 20 40 0 20 40 0 20 40 0 20 40
val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
1.351 1.5 1 0.70 4]
1.304 0.50
1.30 4
141° 0.65 1 005
] 1.254 42
1.25 13
0.60 1
1.20 124 1.20 0.40 4
1.15 4 0.55 !
114 1.154]
1104 0.354%
1.0 1 0.50 A
1054, ‘ . : ‘ r 1104, . . : . . 0304 . .
0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

Figure 5.1: Loss curve evaluation graphics and precision evaluation graphics.

Overall, the curves indicate a well-behaved training process with strong final metrics
(precision = (.78, recall = 0.63, mAP@50 = 0.70, mAP@50:95 = 0.55), typical of a robust

vehicle-detection model on real-world data.
5.2 Detection and Tracking Performance Metrics

Detection Performance

In figure 5.1, detection performance continued to grow efficiently from the start to the last
epoch (the four graphics on the right), achieving a precision and a recall of above 0.78 and
0.61, respectively. A considerable gain is observed in mAP@50, growing from 0.35 to reach
a peak of around 0.60 at epoch 50. In parallel, mAP@50:95 reached its peak of 0. 51 at the
last epoch, a healthy improvement of the model precision.

Tracking Performance

Tracking evaluation using BYTETrack yielded a MOTA of 0.6753, reflecting robust
multi-object tracking performance. Full MOT metrics show IDF1 = 83.1%, IDP = 82.2%,
IDR = 84.0%, Recall = 84.9%, and Precision = 83.0%, with 25 mostly tracked (MT) and 11

59

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

partially tracked (PT) out of 37 ground truth trajectories. Low identity switches (IDs = 3) and
fragmentations (FM = 76) confirm strong association stability, while MOTP = 0.222 indicates

good localization accuracy.

ByteTrack MOT Performance - Cityscapes Dataset

Trajectory Quality

Key MOT Metrics

(37 total) . 703 Error Distribution
Mostly 10 689
Lost
e _ 830‘%‘

Partially

Tracked

1

et _ 849% (' 102 %
-
=
3
2
Q
o _ 33-1‘%‘
Mostly
Tracked 1
(25) 10
|
0 20 40 80 80 100 False False D Fragments
Score (%) Positives Megatives Switches
Identity Preservation Precision-Recall Space MOTA Components
100 90 %
= = Excellent (>80%)

83.1% 82.2% 84.0% 88 80

B0 =

B0

Score (%)

Precision (%)
F & 8 8B ® 8
Contribution to MOTA (%)
AIJ ~n ey
=] =1 o o

w’

0.1%
@0 Detection
. Identity

ABE%
IDF1 ID Precision 1D Recall 750 775 800 825 850 815 900 Comect FN H% 1D switen

Recall (%) Detections Penalty Penalty Penalty

40

20

Figure 5.2: ByteTrack performance evaluation.

Overall, the curves on fig 5.1 indicate a well-behaved training process with strong final
metrics, typical of a robust vehicle-detection model on a real-world data. And, ByteTrack
shows exceptional ID preservation and a high percentage of trajectories tracked. These results

validate effective integration of Ultralytics detection with BY TETrack for reliable vehicle

tracking across frames.

5.3 Qualitative analysis of the model

The results of comparing the pretrained model and the mixed dataset model show a notable

class improvement and stability. Both models were validated on the COCO validation set

60

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

with vehicles' classes and compared in the table below; the last column shows the

improvements.
Table 5.1:Metrics comparison YoloIn.pt and the mixed model dataset,
Metric Pretrained YOLO11n | Mixed S0ep | Improvement
mAP@0.5 0.6453 0.7053 +9.31% 1
mAP@0.5:0.95 0.4595 0.5131 +11.68% 1
Precision 0.7351 0.7800 +6.11% 1
Recall 0.5700 0.6122 +7.41%

Below are some random images from the streets of Vila Nova de Gaia for comparison
purposes. On the first image (Figure 5.3) we can see that the Yolo11n.pt detects 7 vehicles
when there are 4, exactly how the mixed dataset model presents. It is also visible the struggles
of Yolo11n.pt when small obstruction is present (see the left side of both images on figure
5.3), however the mixed model behaves consistently. In figure 5.4 and 5.5, the mixed model

is slightly more confident than the Yolo11n.pt.

i 7

N
S s

S
SO
S

Figure 5.3:Santo Ovidio's metro station (a).

mailto:mAP@0.5

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

L Mixed Model (5 vehicles)fH
i

Figure 5.5: Vila Nova de Gaia, Canelas, A29.

The mixed dataset model is more conservative and more optimized for precision over
recall, with strong qualitative performance: higher confidence, better calibration, and
strategic detection filtering. Ideal for applications where false positives are costly

(autonomous driving, traffic monitoring).

5.4 Important Fine-tune considerations

The results of this training were considerably positive, considering that the YOLO weights
are pretrained on the COCO dataset, with more than 80 classes and around 110 000 instances,
compared to the mixed dataset containing 28,518 COCO + 25,000 BDD100k, ~200,000+
vehicle annotations across 8 vehicle classes. Moreover, only few classes were used in

training, and 0.7053 of mAP50 and 0.5131 mAP50-90 is sound for YOLO11n.

62

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

These results demonstrate the effectiveness of the knowledge transfer process, where the
YOLO11n model, previously trained on the COCO dataset with multiple classes, was able to
competently specialize in vehicle detection in the urban context of BDD100K dataset,
evidenced by the progressive and consistent improvement of all metrics over the 50
finetuning epochs - with emphasis on the significant growth of ~12% in mAP50-95, and
accuracy of 0.78, indicating that the model not only learned to identify vehicles with greater
accuracy, but also refined its spatial location capacity in complex scenarios, thus validating
the strategy of taking advantage of hierarchical characteristics learned in the generic domain

for application in specific computer vision tasks.

5.4 Prototype Application Demonstration

The trained model was deployed in a real-time prototype using FastAPl with
bytetrack.yaml integration. The system processed video streams at 15 to above 30 FPS on
mid-range hardware, depending on video format and data processing, generating per-class
ESALs using AASHTO 1993 VDF assumptions (car: 0.0005, motorcycle: 0.0001, bus: 0.15,
truck: 2.0). Outputs included directional traffic splits, total ESAL aggregation, and

timestamped CSV/text reports, demonstrating practical utility for traffic load monitoring.

63

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

@ localhost:8000

B The Man Who Expo... @ NewTab & Google @ fundamentos do ser...

Real-Time Vehicle Tracking

nttp:

£ Dell

? -.m..mm_o&m‘ n Counting Mode: Position: ess—

Vehicle Counts

FPS: 15.08

Counting Axis: Y | Last Count Direction: DOWN
Class
Car
Truck
Bus
Motorcycle
Total Counted

Avg Speed (km/h)

Total

631
42
14

687

Daily Traffic: 687 | Average Speed: 5.05 km/h | Total ESAL: 86.4155

Figure 5.6: Prototype webpage demonstration.

The figure 5.7 shows the application running directly on a video from youtube, as we can

Up ESAL
0.1260
32.0000
1.3500
0.0000

33.4760

Down ESAL
0.1895
52.0000
0.7500
0.0000
52.9395

60% m

see the address in the top part of the image, showing a consistent performance on real-time

video.

To assess the counting accuracy of the proposed system, a camera was installed on the

balcony capturing the vehicles on the street (figure 5.7), a manual validation was performed

by counting 200 vehicles in each traffic direction.

64

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Figure 5.7: Prototype testing.

The model detected 197 vehicles in one direction and 200 in the other. The counting

197+200
200+200

accuracy was therefore calculated using the simple rule of three X 100 resulting in

99.25%. This high accuracy demonstrates the model’s strong reliability in real-world

conditions, confirming its suitability for automated traffic monitoring.

5.5 Discussion of Limitations

Despite strong convergence, the model exhibits sensitivity to small objects and heavy
occlusion, reflected in the mAP@S50:95 gap. Also, knowledge retention requires special
attention for producing learning transfer correctly. Speed estimates are approximate and
intended for comparative directional analysis only, not legal metrology. VDF values are
assumed from AASHTO 1993 tables and may not reflect modern axle configurations. Future
work should incorporate load spectra from weight-in-motion data and explore multi-camera

fusion for improved 3D tracking and occlusion handling.

65

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Despite these challenges, the research establishes a viable framework for future
expansion. Subsequent work should prioritize securing funding for better and updated
datasets and computational resources, collaborating with municipal partners for creating
datasets with localized traffic data and specific for heavy vehicles, and leveraging distributed
computing to improve model performance. These steps would address current gaps while

enhancing the technology's practical utility for urban traffic management.

6. Practical Application and Impact Analysis

6.1 The Role of Traffic Volume in Infrastructure Degradation

Traffic volume plays a decisive role in road deterioration, with wear patterns often
accelerating beyond what traditional reactive maintenance can address. Heavy vehicles,
particularly trucks and buses, impose repeated loads that cause permanent deformation,

cracking, and subgrade damage (Ghanizadeh et al., 2025; Septiyani & Indrastuti, 2024).

Two key metrics in traffic analysis are Average Daily Traffic (ADT) — the mean number
of vehicles passing a point in 24 hours — and Average Annual Traffic (AAT), which is the
daily average over a year. These metrics feed into the Equivalent Standard Axle Load (ESAL)
calculation, which converts the combined effect of all vehicle types into the equivalent

damage caused by a single standard axle load (Aljaleel et al., 2024).

Recent advancements emphasize integrating traffic metrics into Al-driven Predictive
Maintenance (PdM) frameworks, with studies showing that multi-source data fusion
significantly enhances deterioration forecasting accuracy (Umair Hassan et al., 2023). These
approaches are further refined by hybrid techniques that couple machine learning predictions
with dynamic multi-objective optimization to strategically prioritize rehabilitation based on
factors like ESAL-derived wear (Alqasi et al., 2024). This data-driven paradigm is already
being operationalized; for instance, connected vehicle data is now leveraged to assess road
quality at scale via the International Roughness Index (IRI), revealing clear correlations
between high traffic volumes and increased roughness to inform targeted PdAM investments
(Llopis-Castelldo et al., 2024). Complementing this, image processing and Al enable

proactive, visual distress detection, automatically identifying and prioritizing maintenance

66

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

for traffic-induced cracks and potholes to achieve more sustainable infrastructure outcomes

(Gopalakrishnan et al., 2022).

6.2 Predictive Maintenance Framework

Predictive maintenance systems can set alerts when remaining life falls below a threshold,
allowing timely interventions. Real-time analytics can help urban planners to align
maintenance with actual load patterns, turning high-traffic corridors from costly liabilities
into efficiently managed assets.

Industry analyses indicate that integrating Al, 10T sensor networks, and predictive-
analytics platforms is emerging as a cost-efficient strategy for road-asset management,
particularly across European road networks where data quality, interoperability, and
organizational change management have been identified as critical enablers of measurable
savings (Europe (virtual) 2024: Harnessing the power of predictive maintenance in roads |
McKinsey, 2024). loT-enabled pavement-monitoring frameworks further demonstrate that
real-time sensing combined with machine-learning models can reduce inspection effort and
maintenance expenditures by improving defect detection, prioritization, and intervention
timing (Cano-Ortiz et al., 2022; Tamagusko et al., 2024). By incorporating traffic-loading
metrics—such as vehicle-type distributions, axle-load spectra, and E SAL factors derived
from national datasets like Portugal’s TMDA—predictive-maintenance systems can evolve
into resilient, cost-effective tools that mitigate the non-linear deterioration associated with

heavy-vehicle volume and overloaded axles (Hatoum et al., 2022).

By incorporating vehicle type distributions and axle factors into ESAL calculations from
sources like Portugal's TMDA data, PdM can evolve into a resilient, cost-effective paradigm,

mitigating the non-linear impacts of traffic volume on global infrastructure.

6.3 Case Study: Traffic Context in Portugal

The necessity for predictive, Al-driven pavement management is starkly illustrated by
traffic data from Portugal's National Road Network (RRN), according to the Autoridade da
Mobilidade e dos Transportes (AMT, 2023), the overall Annual Average Daily Traffic

67

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

(TMDA) across major roads in 2022 was 20,110 vehicles, with intense concentration in
metropolitan areas like Lisbon, where the A5 recorded over 144,000 vehicles per day—

compared to sparse rural traffic on routes like the A4.

Within the same, A cluster analysis report further segments the network into distinct
demand patterns, from high-traffic urban corridors to seasonally spiking tourist routes. These
pronounced regional and seasonal variations in volume directly amplify degradation risks,
particularly in high-ESAL corridors, underscoring the critical need for the predictive

maintenance strategies discussed previously.

6.4 Integration into Smart Urban Ecosystems

The integration of Al-powered vehicle image recognition systems into urban planning and
transportation management offers transformative potential, enabling real-time monitoring
and analysis of traffic patterns, vehicle density, and infrastructure conditions. These systems
provide actionable insights for city planners and traffic authorities while addressing critical

challenges caused by heavy traffic loads.

6.4.1 Real-Time Traffic Monitoring and Road Degradation

Al, with computer vision, can analyze live video feeds to:

- Classify vehicles and count traffic volume (ADT)

- Calculate Equivalent Single Axle Loads (ESAL) using predefined Vehicle Damage
Factors (VDFs)

- Predict remaining pavement life by comparing cumulative ESAL to design

thresholds.

These features can be used by urban planners to monitor infrastructure degradation and
actively prevent serious road damages by performing preventive maintenance and adjusting

traffic, accordingly, as presents the following subsections.

6.4.2 Predictive Maintenance

With computer vision applied to traffic management, it is possible to:

68

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

- Prioritize road repairs: Vehicle overloading is considered one of the most significant
causes of accelerating flexible pavement deterioration, reducing the pavement’s
design life, and affecting the overall sustainability of the pavement system (Hatoum
et al., 2022; Putri et al., 2024). By identifying high-ESAL corridors, such as
Industrial zones with frequent overloaded trucks, for targeted maintenance, Al can
reduce costs of infrastructure repairments.

- Dynamic road resurfacing schedules: Systems integrate real-time ESAL data to

adjust maintenance timelines, avoiding premature failures.

These two features can be used by urban planners to automate intervention in advance.

6.4.3 Smart City Integration
Vehicle detection and tracking with Al can be integrated into smart cities in:

- Public transport optimization: Tracking buses and freight vehicles improves routing,
while emission-aware policies use vehicle class data to reduce carbon footprints
(Singapore, 2018).

- Overload enforcement: Cameras flag overloaded trucks for inspection, mitigating
damage quantified by studies such as AASHTO Guide for Design of Pavement

Structures.

The integration of Al-powered vehicle detection and tracking moves urban management
from a reactive to a predictive and proactive model. As demonstrated, these systems deliver
a dual benefit: theyoptimize real-time operational efficiency, while
simultaneously safeguarding long-term public assets through precise, data-driven
enforcement against costly wear and tear, as quantified by foundational engineering
principles. Ultimately, this technological synergy is not merely about streamlining traffic, it

is about building a more sustainable, resilient, and economically viable urban future."

6.4.4 Case Studies

The integration of Al-powered vehicle tracking is revolutionizing urban infrastructure
management. Systems like Barcelona's Smart Parking demonstrate how guiding drivers to

available spots directly reduces vehicle miles traveled (VMT) and congestion, a benefit

69

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

confirmed by recent analyses of loT-based parking solutions (Bhatnagar et al., 2025). This
reduction in circling traffic indirectly lowers the cumulative Equivalent Single Axle Load
(ESAL) on pavements, mitigating long-term wear. Furthermore, the manual ESAL-based
alert systems pioneered by jurisdictions like Sidoarjo (Indonesia) are now being superseded
by predictive Al. Research has progressed to where artificial intelligence can automatically
detect pavement damage and forecast deterioration in real-time, effectively automating
infrastructure lifespan predictions (Abu Dabous et al., 2025). This synergy of dynamic
operational data and long-term structural analytics represents the forefront of building

sustainable and resilient urban transport networks.

By merging real-time operational insights like traffic flow with long-term infrastructure
analytics (ESAL-based wear models), Al systems modernize urban resilience, as seen in
global benchmarks. These innovations, combined with seamless integration into legacy
traffic management systems, will pave the way for more resilient, efficient, and universally

deployable solutions, ultimately supporting smarter urban ecosystems.

7. Conclusion and Future Work

7.1 Synthesis of Contributions

Resorting to Artificial intelligence to address the challenges of human life has proved to
be very successful in response to the rapidly changing events of society, with the structural,
demographic, and climate changes imposing volatile and uncertainty situations with a high
degree of complexity and ambiguity. In the realm of computer vision, image recognition has

been used to bring new solutions and approaches to enhance human life.

In this work it was presented, the base and evolution of machine learning. Also standing
as a study to consider as an introduction to computer vision and artificial intelligence. A very
simplistic approach on how to apply the available models of computer vision was presented;
from gathering the data, training the model, evaluating to implementation in simulated
scenario. A methodology to use image recognition with artificial intelligence for improving

urban planning and transportation through vehicle identification was proposed and developed

70

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

as a prototype, using the recent version of a pre-trained model of YOLO for detecting,

tracking and counting the vehicle on the road, can give insights to help on decision making.

Furthermore, the necessary steps to choose the technologies, to prepare the working
environment and the requirements were presented and explained in a simple way. Also, the
process was presented to select the adequate dataset to enhance the pretrained model
according to the goal of this work. Moreover, the evaluation of the model and analysis of the
results of the experiment showed that the implemented methodology for training the model

was considerably positive and the model learned, although not achieving the peak results.

Key Technical Contributions:

e Implementation of a YOLOvl11-based vehicle detection system achieving around
78% precision and 63% recall;

e Development of an integrated tracking and counting pipeline using ByteTrack
algorithm;

e C(Creation of a web-based prototype application with real-time visualization
capabilities;

e Application of Clean Architecture and Domain-Driven Design principles to computer
vision systems;

e Demonstration of ESAL-based calculation for predictive maintenance framework for

urban infrastructure.

7.2 Implications for Urban Planning and Traffic Management

This study provides valuable insights into how Al-driven vehicle recognition can optimize
traffic management and urban infrastructure. The integration of Al-powered vehicle
recognition systems into traffic monitoring frameworks can enable real-time identification
and classification of vehicles, leading to improved traffic flow regulation and generating
useful data for predicting road maintenance. It can help to detect congestion patterns
automatically, identify high-density traffic zones, and analyze peak-hour trends, which
allows urban planners to design more effective road infrastructure, allocate resources

efficiently, and implement data-driven traffic control measures. Additionally, accurate

71

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

vehicle identification contributes to the development of intelligent transportation systems

(ITS), which facilitate the enhancement of public transport services.

Within the concept of smart cities, urban planners can leverage Al-driven vehicle
recognition data to implement better solutions by using the insights derived from traffic
patterns and vehicle movement analysis for determining optimal locations for roads,
pedestrian pathways, and public transport facilities. Furthermore, Al-enabled simulations can
model different urban development scenarios, allowing policymakers to make informed

decisions on sustainable infrastructure planning.
Specific Implications:

- Real-time Traffic Optimization: Al systems can dynamically adjust traffic signals and
routing based on actual vehicle counts and classifications

- Predictive Infrastructure Management: ESAL calculations enable proactive
maintenance scheduling based on actual road usage patterns

- Data-Driven Urban Planning: Vehicle classification data informs long-term
infrastructure development and public transport planning

- Cost Reduction: Automated monitoring reduces manual inspection costs and enables

targeted maintenance interventions

7.3 Challenges and Future Research Directions

Despite its numerous advantages, Al-driven image recognition for vehicle identification
faces several challenges, including model accuracy in varying environmental conditions,
computational resource requirements, and ethical concerns regarding data privacy. Future
work will focus on curating specific datasets for vehicle detection, refining model training
strategies, and evaluating performance on additional real-world datasets to improve model
robustness against occlusions, adverse weather conditions, and variations in vehicle
appearance. Evaluate rigorously the tracking capacity of the trained model and improve the
model regarding processing frames per second. Additionally, integrating Al with edge
computing solutions can enhance real-time processing capabilities, making these systems

more scalable and deployable in urban environments.

72

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Specific Challenges Identified:

- Environmental Robustness: Performance degradation under adverse weather
conditions and low-light scenarios.

- Computational Requirements: High GPU power demands limiting deployment to
less robust models.

- Dataset Class Imbalance: Underrepresentation of essential vehicle classes
affecting detection accuracy.

- Dataset Limitations: Bias in European-centric training data affecting
generalizability to other regions.

- Access to road and pavement data to estimate lifespan with consideration to traffic

load, environmental conditions, and material quality.

Future Research Directions:

- Multi-sensor Fusion: Integrating LiDAR or thermal imaging with existing camera
systems to improve detection accuracy in challenging conditions.

- Edge Computing: Developing lightweight models for local device deployment to
reduce latency and bandwidth demands.

- Adaptive Learning: Creating mechanisms for systems to evolve with changing urban
environments and vehicle designs.

- Dataset Diversification: Collaborative efforts with cities worldwide to create more
representative training datasets.

- Advanced Tracking Algorithms: Implementing more sophisticated multi-object
tracking to handle complex urban scenarios.

- Real-time ESAL Integration: Developing live ESAL calculation and alert systems for
immediate maintenance prioritization.

- Integration with legacy systems: Explore the possibility of integrating these models

with legacy traffic management systems.

Based on experimental results, specific improvements are needed:

73

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

- The model achieves a reasonable balance between precision and recall but may
benefit from additional training data to reduce missed detections and increase
precision.

- Fine-tuning hyperparameters such as the learning rate and batch size to further
optimize model performance.

- Diversify and add better quality images and annotations originally in YOLO format
to avoid annotation conversion.

- Diversify the dataset with more vehicle classes and models to specialize the model in

vehicle detection.

Despite current limitations, this research establishes a viable framework for future
expansion and demonstrates the significant potential of Al-powered vehicle recognition
systems to transform urban mobility and infrastructure management. The system's modular
design provides a scalable foundation for city-wide deployment. Future work will focus on
integrating edge computing and multi-camera networks to transform the prototype into a

comprehensive, city-scale predictive maintenance platform.

74

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Bibliography

A Comprehensive Guide to Al Tech Stack. (2025, fevereiro 25). Sparx IT Solutions.
https://www.sparxitsolutions.com/blog/ai-tech-stack/

Abu Dabous, S., Ait Gacem, M., Zeiada, W., Hamad, K., & Al-Ruzougq, R. (2025).
Artificial intelligence applications in pavement infrastructure damage detection with
automated three-dimensional imaging — A systematic review. Alexandria Engineering
Journal, 117, 510-533. https://doi.org/10.1016/j.aej.2024.11.081

Abubakr, M., Rady, M., Badran, K., & Mahfouz, S. Y. (2024). Application of deep learning
in damage classification of reinforced concrete bridges. Ain Shams Engineering Journal,
15(1), 102297. https://doi.org/10.1016/j.asej.2023.102297

Aljaleel, Z. M., Ahmed, N. Y., & Atemimi, Y. K. A. (2024). Finite Element Modeling to
Predicting Rutting in Flexible Pavements under Overloading. Salud, Ciencia y Tecnologia -
Serie de Conferencias, 3, 822. https://doi.org/10.56294/sctconf2024822

Algasi, M. A. Y., Alkelanie, Y. A. M., & Alnagrat, A. J. A. (2024). Intelligent Infrastructure
for Urban Transportation: The Role of Artificial Intelligence in Predictive Maintenance.
Brilliance: Research of Artificial Intelligence, 4(2), 625—637.
https://doi.org/10.47709/brilliance.v4i2.4889

AMT. (2023). Amt-autoridade.pt. https://www.amt-autoridade.pt/

Bhatnagar, P., Sahu, P., Dawra, D. S., Sharma, S., & Sharma, S. (2025). 4 Review of IOT
Based Smart Parking Systems: Advancements, Challenges & Future Directions. 11(9).

Bird, J. J., & Lotfi, A. (2024). CIFAKE: Image Classification and Explainable
Identification of Al-Generated Synthetic Images. IEEE Access, 12, 15642—15650. IEEE
Access. https://doi.org/10.1109/ACCESS.2024.3356122

Cano-Ortiz, S., Pascual-Mufioz, P., & Castro-Fresno, D. (2022). Machine learning
algorithms for monitoring pavement performance. Automation in Construction, 139,
104309. https://doi.org/10.1016/j.autcon.2022.104309

Cernadas, E. (2024). Applications of Computer Vision, 2nd Edition. Electronics, 13(18),
Artigo 18. https://doi.org/10.3390/electronics13183779

Cityscapes Dataset — Semantic Understanding of Urban Street Scenes. (2020, outubro 17).
https://www.cityscapes-dataset.com/

D, M., Alaswad, F., Aljaddouh, B., Ranganayagi, L., & R, S. (2025). Al-Powered Traffic
Management: Improving Congestion Detection and Signal Regulation. 2025 International

75

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Conference on Multi-Agent Systems for Collaborative Intelligence (ICMSCI), 899-904.
https://doi.org/10.1109/ICMSCI62561.2025.10894186

De Sordi, J. O. (2021). Variations of the DSR Approach. Design Science Research
Methodology, 111-120. https://doi.org/10.1007/978-3-030-82156-2_7

Di Grande, S., Berlotti, M., & Cavalieri, S. (2024). AI-Powered Urban Mobility Analysis
for Advanced Traffic Flow Forecasting. 57—64. https://doi.org/10.5220/0012625900003714

Ejaz, U., Ramon, W., & Olaoye, G. (sem data). The Role of Big Data and Al in Smart Cities
and Urban Planning.

Europe (virtual) 2024: Harnessing the power of predictive maintenance in roads |
McKinsey. (2024). https://www.mckinsey.com/industries/infrastructure/global-
infrastructure-initiative/roundtables/europe-2024-harnessing-the-power-of-predictive-
maintenance-in-roads?utm_source=chatgpt.com

Faqih Seknun, H., Setyawan, A., & Pungky Pramesti, F. (2025). Assesment of road
condition and roads maintenance to reduce potential environmental damage. IOP
Conference Series: Earth and Environmental Science, 1438(1), 012085.
https://doi.org/10.1088/1755-1315/1438/1/012085

Francisco, K. V., Robles, E. C., & Samson, H. P. (2024). Artificial Intelligence for Traffic
Management: A Comprehensive Review of Advances and Challenges (SSRN Scholarly
Paper No. 5062545). Social Science Research Network.
https://doi.org/10.2139/ssrn.5062545

Ghanizadeh, A. R., Fakhri, M., Amlashi, A. T., & Dessouky, S. (2025). Effect of strain
waveform modeling and loading frequency on the fatigue life of asphalt concrete.
Construction and Building Materials, 462, 139906.
https://doi.org/10.1016/j.conbuildmat.2025.139906

Hatoum, A. A., Khatib, J. M., Barraj, F., & Elkordi, A. (2022). Survival Analysis for
Asphalt Pavement Performance and Assessment of Various Factors Affecting Fatigue
Cracking Based on LTPP Data. Sustainability, 14(19), 12408.
https://doi.org/10.3390/su141912408

Igorevich Rozhdestvenskiy, O., & Poornima, E. (2024). Enabling Sustainable Urban
Transportation with Predictive Analytics and loT. MATEC Web of Conferences, 392, 01179.
https://doi.org/10.1051/matecconf/202439201179

Implementing Command Query Responsibility Segregation (CQRS) in Large-Scale
Systems. (2024). International Journal of Research in Modern Engineering & Emerging
Technology, 12(12), 49—-73. https://doi.org/10.63345/ijrmeet.org.v12.112.3

76

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

INNOVATIVE TECHNOLOGIES FOR TRAINING AND EDUCATING YOUNG PEOPLE.
(2025). International Science Group.

Jiang, X., Hadid, A., Pang, Y., Granger, E., & Feng, X. (Eds.). (2019). Deep Learning in
Object Detection and Recognition. Springer Singapore. https://doi.org/10.1007/978-981-10-
5152-4

Junker, A., & Lazzaretti, F. (2025). API Design Supported by Domain-Driven Design.
Crafting Great APIs with Domain-Driven Design, 71-119. https://doi.org/10.1007/979-8-
8688-1457-0_5

Kamrowska-Zatuska, D. (2021). Impact of Al-Based Tools and Urban Big Data Analytics
on the Design and Planning of Cities. Land, 10(11), Artigo 11.
https://do1.org/10.3390/1and10111209

Kapferer, S., & Zimmermann, O. (2020). Domain-specific Language and Tools for
Strategic Domain-driven Design, Context Mapping and Bounded Context Modeling. 299—
306. https://doi.org/10.5220/0008910502990306

Kourtit, K., Nijkamp, P., Osth, J., & Turk, U. (2024). Is artificial intelligence a trustworthy
route navigation system for smart urban planning? Eastern Journal of European Studies,
15(2), 30-47. https://doi.org/10.47743/ejes-2024-0203

Krauss, P. (2024). Artificial Intelligence and Brain Research: Neural Networks, Deep
Learning and the Future of Cognition. Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-662-68980-6

Lano, K., & Yassipour Tehrani, S. (2023). Introduction to Clean Architecture Concepts.
Undergraduate Topics in Computer Science, 35—-49. https://doi.org/10.1007/978-3-031-
44143-1 2

Lee, R. S. T. (2020). Artificial Intelligence in Daily Life. Springer Singapore.
https://doi.org/10.1007/978-981-15-7695-9

Liao, K. (2022). Road Damage Intelligent Detection with Deep Learning Techniques. 2022
IEEE 5th International Conference on Information Systems and Computer Aided Education
(ICISCAE), 795-799. https://doi.org/10.1109/ICISCAE55891.2022.9927635

Llopis-Castelld, D., Camacho-Torregrosa, F. J., Romeral-Pérez, F., & Tomas-Martinez, P.
(2024). Estimation of Pavement Condition Based on Data from Connected and
Autonomous Vehicles. Infrastructures, 9(10), 188.
https://doi.org/10.3390/infrastructures9100188

Marasinghe, R., Yigitcanlar, T., Mayere, S., Washington, T., & Limb, M. (2024). Computer
vision applications for urban planning: A systematic review of opportunities and

71

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

constraints. Sustainable Cities and Society, 100, 105047.
https://doi.org/10.1016/j.s¢s.2023.105047

Nadarajan, J., & Sivanraj, R. (2022, dezembro 13). Attention-Based Multiscale
Spatiotemporal Network for Traffic Forecast with Fusion of External Factors.
https://www.mdpi.com/2220-9964/11/12/619

Neha, F., Bhati, D., Shukla, D. K., & Amiruzzaman, M. (2024). From classical techniques
to convolution-based models: A review of object detection algorithms (No.
arXiv:2412.05252). arXiv. https://doi.org/10.48550/arX1v.2412.05252

Ogunkan, D. V., & Ogunkan, S. K. (2025). Exploring big data applications in sustainable
urban infrastructure: A review. Urban Governance, 5(1), 54—68.
https://doi.org/10.1016/j.ugj.2025.02.003

Ponce, P., Peffer, T., Mendez Garduno, J. 1., Eicker, U., Molina, A., McDaniel, T., Musafiri
Mimo, E. D., Parakkal Menon, R., Kaspar, K., & Hussain, S. (2023). Data and Al Driving
Smart Cities (Vol. 128). Springer International Publishing. https://doi.org/10.1007/978-3-
031-32828-2

Putri, S. A., Sholichin, 1., & Fatikasari, A. D. (2024). Analysis of The Influence of Vehicle
Overloading on The Remaining Life of The Road Plan. Composite: Journal of Civil
Engineering, 3(2), 13-24. https://doi.org/10.26905/cjce.v3i2.13274

Ren, M., Zhang, X., Zhi, X., We1, Y., & Feng, Z. (2024). An annotated street view image
dataset for automated road damage detection. Scientific Data, 11(1), 407.
https://doi.org/10.1038/s41597-024-03263-7

Sager, C., Janiesch, C., & Zschech, P. (2021). A survey of image labelling for computer
vision applications. Journal of Business Analytics, 4(2), 91-110.
https://doi.org/10.1080/2573234X.2021.1908861

Saini, K., & Sharma, S. (2025). Smart Road Traffic Monitoring: Unveiling the Synergy of
IoT and Al for Enhanced Urban Mobility. ACM Comput. Surv., 57(11), 276:1-276:45.
https://doi.org/10.1145/3729217

Septiyani, Y. N., & Indrastuti. (2024). The Impact of Load Traffic of Road Deterioration in
Urban Areas: Case Study Jalan KH Abdul Halim Majalengka. LEADER: Civil Engineering
and Architecture Journal, 2(4), 911-919. https://doi.org/10.37253/leader.v2i14.10145

Serrano, L. G. (2021). Grokking machine learning. Manning Publications.

Singapore, M. of T. (2018). LTA | Land Transport Master Plan 2040.
https://www.lta.gov.sg/content/ltagov/en/who_we_are/our work/land transport master pla
n_2040.html

78

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Solahudin, N., & Susanto, M. D. P. (2025). Analysis of Road Damage Factors Based on
Vehicle Load and Volume on K.H. Zaenal Arifin Road Segment Cikulak — Cibogo.
Devotion : Journal of Research and Community Service, 6(4), Artigo 4.
https://doi.org/10.59188/devotion.v6i4.25454

Tamagusko, T., Gomes Correia, M., & Ferreira, A. (2024). Machine Learning Applications
in Road Pavement Management: A Review, Challenges and Future Directions.
Infrastructures, 9(12), 213. https://doi.org/10.3390/infrastructures9120213

Ultralytics. (2025). Home. https://docs.ultralytics.com/

Umair Hassan, M., Hagen Steinnes, O.-M., Gribbestad Gustafsson, E., Leken, S., & A.
Hameed, 1. (2023, margo 8). Predictive Maintenance of Norwegian Road Network Using
Deep Learning Models. https://www.mdpi.com/1424-8220/23/6/2935

U.S. Department of Transportation. (2024, janeiro). FHWA Bridge Preservation Research
Roadmap.

Valdovinos-Chacon, G., Rios-Zaldivar, A., Valle-Cruz, D., & Lara, E. R. (2025). Integrating
[oT and YOLO-Based Al for Intelligent Traffic Management in Latin American Cities. Em
R. Sandoval-Almazéan & D. Valle-Cruz (Eds.), Artificial Intelligence in Government: Latin
America Challenges and Expectations (pp. 227-253). Springer Nature Switzerland.
https://doi.org/10.1007/978-3-031-87623-3 10

Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J., & Ding, G. (2024a). YOLOv10:
Real-Time End-to-End Object Detection.

Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J., & Ding, G. (2024b). YOLOv10:
Real-Time End-to-End Object Detection (No. arXiv:2405.14458). arXiv.
https://doi.org/10.48550/arXiv.2405.14458

Wang, H., Yuan ,Yun, Yang ,Xianfeng Terry, Zhao ,Tian, & and Liu, Y. (2023). Deep Q
learning-based traffic signal control algorithms: Model development and evaluation with
field data. Journal of Intelligent Transportation Systems, 27(3), 314-334.
https://doi.org/10.1080/15472450.2021.2023016

Wubuli, A., Li, F., Cao, S., & Zhang, L. (2025). Timing of Preventive Highway
Maintenance: A Study from the Whole Life Cycle Perspective. Sustainability, 17(3), Artigo
3. https://doi.org/10.3390/su17031009

Yap, W., Chang, J.-H., & Biljecki, F. (2023). Incorporating networks in semantic
understanding of streetscapes: Contextualising active mobility decisions. Environment and
Planning B: Urban Analytics and City Science, 50(6), 1416—1437.
https://doi.org/10.1177/23998083221138832

79

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Yigitcanlar, T., Kankanamge, N., Regona, M., Ruiz Maldonado, A., Rowan, B., Ryu, A.,
Desouza, K. C., Corchado, J. M., Mehmood, R., & Li, R. Y. M. (2020). Artificial
Intelligence Technologies and Related Urban Planning and Development Concepts: How
Are They Perceived and Utilized in Australia? Journal of Open Innovation: Technology,
Market, and Complexity, 6(4), Artigo 4. https://doi.org/10.3390/joitmc6040187

Zhang, Y., Sun, P, Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo, P, Liu, W., & Wang, X.
(2022). ByteTrack: Multi-object Tracking by Associating Every Detection Box. Em S.
Avidan, G. Brostow, M. Ciss¢é, G. M. Farinella, & T. Hassner (Eds.), Computer Vision —
ECCV 2022 (Vol. 13682, pp. 1-21). Springer Nature Switzerland.
https://doi.org/10.1007/978-3-031-20047-2 1

Zhao, X., Wang, L., Zhang, Y., Han, X., Deveci, M., & Parmar, M. (2024). A review of
convolutional neural networks in computer vision. Artificial Intelligence Review, 57(4), 99.
https://do1.org/10.1007/s10462-024-10721-6

Zhu, Y., Wang, Y., An, Y., Yang, H., & Pan, Y. (2024). Real-Time Vehicle Detection and
Urban Traffic Behavior Analysis Based on Unmanned Aerial Vehicle Traffic Videos on
Mobile Devices (SSRN Scholarly Paper No. 4976574). Social Science Research Network.
https://doi.org/10.2139/ssrn.4976574

80

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Appendix

Appendix A - Training Batch

a1b6bc44-b3d9934d_BDD.j jpg 000000112860_COCO.jpg

Agian

%2@] %1%’911

N gﬁ%g%

000000462488_COCO.jpg

3bae6552-fccfofod _BDD.jpg , |000000284355_COCO.jpg

@1 Eg1

81

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Appendix B

Validation Batch

000000485237.jpg 000000490413.jpg
airplane_ airplane i
)

000NIAASER49.1pg 000000504000.jp!
airplane pipianas
» @y 2 Fa
- ~

o — | e mem

N

-?-a-ro 00527220.jpg | 000000344883:pg

A
|’ '(w‘ (2 traiq

82

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Appendix C - Class Balance

300000 -
250000 -
200000 -

150000 -

instances

100000 -

50000 -

0- .- I T e

0.0 2.5 5.0 7.5
classes
0.8 -
0.6 -
>
0.4 -
0.2 -
0.2 0.4 0.6

10.0

1.0-
0.8 -
0.6 -

—

=

()]

o

L
0.4-
0.2-

0.8 0.2 0.4 0.6 0.8 1.0
width

83

Al-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

Appendix D

Confusion Matrix

Confusion Matrix Nomal izest

person -

L .

motorcycle
rotane 0.8

bus

train
truck
e

raffic i

e hergm
s1op sign
parking meter
bench

umbrella
handba
i
syitcase
insbee
skis
snowboard
‘sports ball
baseall bat
baseball glove
skateboard
surfboard
tennis racket
bottle

wing glass
cuj

Predicted

-0.4
knife

@
hck
e
RN

-0.3

coucl

patted plant
e

dining table

toilet

-0.2

laptop
oS
remote
keyboard
cell phane
hicrbwaye
tossie
osster
<ini -0.1

refrigeratar
book
clock
ase
st -
teddy bear
hair drier =
blami([hbmsg-

U aE S S PPy SR P o e D LK VDY S e RO L B R DR S SUN DR U e LY p XK R PR DED

e g S e S i L e e R L

88 ge THnEstR Eu gTWoone 47 8p poSgnED MRRpRorpfsastoin o7 ERRSAZCE gTTUIniEE

g5 E5EP w E5E @ F3 vEELe £ S I E FI £ %gEsY

2272 R 28EPE “ £ YUE b &
E 27 B OEEHTE s S E B g7a3
H E
True

84

	Acknowledgements
	Abstract
	Resumo
	Summary
	List Of Figures
	List Of Tables
	Acronyms
	1. Introduction
	1.1 Context
	1.2 Motivation
	1.3 Purpose
	1.4 Method
	1.5 Structure of the document

	2. Artificial Intelligence in Urban Planning and traffic management
	2.1 Artificial Intelligence and Its Role in Urban Planning
	2.2 Artificial Intelligence for traffic management and Smart Cities
	2.3 Machine learning and Computer Vision
	2.4 Deep Learning
	2.4.1 Convolutional Neural Networks
	2.4.2 Image classification
	2.4.3 Object detection

	2.5 Traffic Volume Impact on the Roads
	2.5.1 An AI & Computer Vision Approach for Vehicle Counting and Classification

	2.6 Related Works

	3. System Design and Methodology
	3.1 Research Methodology and Development Approach
	3.2 System requirements
	3.3 Proposed System Architecture
	3.3.1 Architectural Principles and Patterns
	3.3.2 Structural Diagrams
	3.3.3 Core Domain Models
	3.3.4 Runtime Components
	3.3.5 Summary table: Core Domain Models and Runtime Components

	3.4 System Implementation
	3.4.1 Technologies and Tools
	3.4.2 Applied Design Patterns

	3.5. Core Algorithms
	3.5.1 Vehicle Detection with YOLO
	3.5.2 Multi-Object Tracking with BYTETrack
	3.5.3 Virtual Line Counting Algorithm and Speed Average Calculation
	3.5.4 ESAL Calculation for Predictive Maintenance

	4. Chapter 4: Experimental Setup
	4.1 Dataset Selection and Preparation
	4.2 Model Training (YOLO)
	4.2.1 Environment Setup (Hardware/Software)
	4.2.2 Training Configuration and Hyperparameters

	4.3 Prototype Application Development
	4.3.1 Backend (FastAPI) and Frontend (Streamlit) Setup)
	4.3.2 Testing Scenario

	4.4 Evaluation Methodology
	4.4.1 Performance Metrics
	4.4.2 Experimental Protocol

	5. Results and Discussion
	5.1 Model Training Performance (Loss Curves)
	5.2 Detection and Tracking Performance Metrics
	5.3 Qualitative analysis of the model
	5.4 Important Fine-tune considerations
	5.4 Prototype Application Demonstration
	5.5 Discussion of Limitations

	6. Practical Application and Impact Analysis
	6.1 The Role of Traffic Volume in Infrastructure Degradation
	6.2 Predictive Maintenance Framework
	6.3 Case Study: Traffic Context in Portugal
	6.4 Integration into Smart Urban Ecosystems
	6.4.1 Real-Time Traffic Monitoring and Road Degradation
	6.4.2 Predictive Maintenance
	6.4.3 Smart City Integration
	6.4.4 Case Studies

	7. Conclusion and Future Work
	7.1 Synthesis of Contributions
	7.2 Implications for Urban Planning and Traffic Management
	7.3 Challenges and Future Research Directions

	Bibliography
	Appendix

