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Abstract 

Modern cities face complex challenges in traffic management and road maintenance, 

which impact both quality of life and infrastructure efficiency. AI-powered vehicle image 

recognition offers a promising solution by transforming visual data into actionable insights 

for optimized transportation planning and predictive infrastructure maintenance. 

Artificial Intelligence enables complex, data-driven tasks through machine learning, with 

computer vision processing visual data to extract actionable insights in urban environments. 

By leveraging vehicle identification and object detection, AI enhances urban planning and 

transportation systems, optimizing traffic flow, reducing congestion, and improving safety, 

while also enabling proactive infrastructure maintenance through real-time analysis. Recent 

advances in deep learning and convolutional neural networks have introduced robust, real-

time image recognition capabilities that offer practical solutions for the challenges of urban 

mobility and infrastructure management. 

This work focuses on the development of an AI-driven image recognition application for 

vehicle identification, aimed at supporting integrated urban planning, transportation systems 

optimization, and infrastructure monitoring. The research begins with an overview of 

artificial intelligence, machine learning, and deep learning principles, with particular 

emphasis on the architecture and effectiveness of CNNs in object detection tasks. A 

structured methodology is presented, detailing the proposed architectural system, selection 

of relevant datasets, data annotation processes, and experimental setup. Special attention is 

given to the implementation of state-of-the-art object detection models, such as YOLO (You 

Only Look Once), trained and evaluated using the mixed COCO+BDD100k dataset within 

the PyTorch framework, and optimized through GPU acceleration to achieve high-speed 

inference and detection accuracy.  Based on the Design Science Research methodology, this 

work developed a real-time vehicle tracking system using a YOLOv11n, achieving a 

detection precision of approximately 78% and a Multi-Object Tracking Accuracy (MOTA) 

of 67.5%, successfully demonstrating capabilities for vehicle counting, speed estimation, and 

ESAL calculation to support urban planning and predictive maintenance. 
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Furthermore, the study discusses the system's potential to integrate with urban monitoring 

platforms, offering real-time data streams for city planners and traffic authorities. The 

findings underscore the transformative potential of AI in advancing urban mobility, safety, 

and infrastructure resilience, while also identifying avenues for future research, including the 

integration of multi-source data, scalability challenges, and adaptive learning mechanisms 

for evolving urban environments. 

KEYWORDS: Artificial Intelligence (AI); Vehicle Image Recognition; Urban Planning; 

Transportation Management; Deep Learning; Smart Cities 
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Resumo 

As cidades modernas enfrentam desafios complexos na gestão do tráfego e manutenção 

de estradas, o que impacta tanto a qualidade de vida quanto a eficiência da infraestrutura. O 

reconhecimento de imagens de veículos com IA oferece uma solução promissora ao 

transformar dados visuais em informações acionáveis para um planeamento de transporte 

otimizado e uma manutenção preditiva da infraestrutura. 

A Inteligência Artificial permite tarefas complexas e orientadas por dados através da 

aprendizagem máquina, sendo que a visão computacional processa dados visuais para extrair 

informações acionáveis em ambientes urbanos. Ao alavancar a identificação de veículos e a 

deteção de objetos, a IA melhora o planeamento urbano e os sistemas de transporte, 

otimizando o fluxo de tráfego, reduzindo congestionamentos e melhorando a segurança, além 

de permitir uma manutenção proativa da infraestrutura através de análise em tempo real. 

Avanços recentes em aprendizagem profunda e redes neuronais convolucionais introduziram 

capacidades robustas de reconhecimento de imagem em tempo real que oferecem soluções 

práticas para os desafios da mobilidade urbana e gestão de infraestruturas. 

Este trabalho foca-se no desenvolvimento de uma aplicação de reconhecimento de 

imagem orientada por IA para identificação de veículos, com o objetivo de apoiar o 

planeamento urbano integrado, a otimização dos sistemas de transporte e a monitorização de 

infraestruturas. A investigação começa com uma visão geral dos princípios de inteligência 

artificial, aprendizado de máquina e aprendizagem profunda, com ênfase particular na 

arquitetura e eficácia das CNNs em tarefas de deteção de objetos. É apresentada uma 

metodologia estruturada, detalhando o sistema arquitetónico proposto, a seleção de conjuntos 

de dados relevantes, os processos de anotação de dados e o enquadramento experimental. É 

dada atenção especial à implementação de modelos de deteção de objetos de última geração, 

como o YOLO, treinados e avaliados usando o conjunto de dados do COCO+BDD100k no 

ambiente PyTorch, e otimizados através de aceleração por GPU para alcançar alta velocidade 

de inferência e precisão de deteção. Com base na metodologia Design Science Research, este 

trabalho desenvolveu um sistema de rastreamento de veículos em tempo real usando um 

YOLOv11n, alcançando uma precisão de deteção de aproximadamente 78% e uma Multi-

Object Tracking Accuracy (MOTA) de 67,5%, demonstrando com sucesso capacidades para 
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contagem de veículos, estimativa de velocidade e cálculo de ESAL para apoiar o planeamento 

urbano e a manutenção preditiva. 

Além disso, o estudo discute o potencial do sistema para se integrar a plataformas de 

monitorização urbana, oferecendo fluxos de dados em tempo real para planeamento urbano 

e autoridades de trânsito. As conclusões reforçam o potencial transformador da IA no avanço 

da mobilidade urbana, segurança e resiliência das infraestruturas, enquanto identifica 

direções para pesquisas futuras, incluindo a integração de dados de múltiplas fontes, desafios 

de escalabilidade e mecanismos de aprendizagem adaptativa para ambientes urbanos em 

evolução. 

PALAVRAS-CHAVE: Inteligência Artificial (IA); Reconhecimento de Imagens de 

Veículos; Planeamento Urbano; Gestão dos Transportes; Deep Learning; Cidades 

Inteligentes 
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1. Introduction 

1.1 Context  

Modern urban environments face increasing challenges related to traffic congestion, road 

safety, and the timely maintenance of infrastructure. As vehicle density rises and cities grow 

more complex, traditional traffic monitoring systems often fail to provide real-time, accurate 

data necessary for efficient urban management. To address these gaps, advanced sensor 

technologies are being adopted such as those used by the U.S. Department of Transportation, 

(2024) to monitor cracks and structural weaknesses in bridges—enabling early detection, 

timely repairs, and the prevention of catastrophic failures while improving safety, reducing 

costs, and extending infrastructure lifespan. In parallel, integrating AI-powered image 

recognition for vehicle identification offers a powerful solution, by enabling real-time traffic 

flow analysis, early detection of road degradation, and more effective urban planning (Di 

Grande et al., 2024) 

Artificial Intelligence (AI) has evolved to revolutionize industries and societies 

worldwide, particularly through the advent of machine learning and deep learning. Computer 

Vision (CV), an integral component of AI, endows computers with the capability to analyse 

and extract information from visual data, such as images or videos, thereby opening new 

frontiers for image processing and analysis across many disciplines (Marasinghe et al., 2024). 

The primary objective of this work is to develop and evaluate an AI-driven image recognition 

system capable of accurate vehicle detection, classification, and tracking. This system is 

designed not only to optimize traffic management but also to support predictive infrastructure 

maintenance by calculating traffic-induced road degradation through Equivalent Single Axle 

Load (ESAL) metrics. By leveraging a YOLO-based model trained on the mixed dataset 

(COCO+BDD100k), this research aims to demonstrate a practical, scalable prototype that 

transforms visual data into actionable insights for smarter urban ecosystems. 

 As new concepts are being embraced, like smart cities, which are AI driven systems 

presented in form of smart traffic lights, noise or air quality prediction, and foot traffic as 

well as car traffic prediction faculties, the integration of AI technology with urban planning 

practices presents an opportunity for urban planners to enhance their capabilities to analyse 
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large urban datasets, recognise patterns and trends, and make informed predictions through 

modelling and simulation (Marasinghe et al., 2024). Urban space as a dynamic system, 

composed of human and commercial activity, flows of energy and matter, and their 

interactions, can no longer be analysed as a static space built of structures and roads. In the 

rapidly evolving landscape of our modern digital society accompanied by AI opportunities, 

an intelligent city is a beacon for a transformative endeavour that modern smart cities all over 

the world are set to embark upon (Kourtit et al., 2024). Exploring AI techniques to detect, 

classify and identify these dynamics is particularly important.  

1.2 Motivation 

In the realm of urban planning and traffic management, accurate car identification can 

revolutionize how we plan cities, handle traffic flow, detect violations, manage congestion, 

and anticipate infrastructure maintenance. According to Liao, (2022), the constant 

improvement of the country’s road infrastructure, the road surface is influenced by 

environmental factors, including temperature, traffic load, weathering, which gradually 

reduce the pavement structure's strength, eventually leading to various disease characteristics 

(such as cracks, rutting, potholes, etc.). With the development of computer vision and deep 

learning, image classification, object detection, and segmentation techniques have been 

widely employed in the detection of road pavement damages (Ren et al., 2024). Urban 

planners can leverage this technology to analyse traffic patterns and vehicle usage, leading 

to better infrastructure development and resource allocation.  

The potential for improving operational efficiency, safety, and planning underscores the 

importance of advancing AI-based car identification systems. Moreover, the dynamic nature 

of urban environments necessitates robust and adaptable AI models capable of functioning 

under diverse conditions. From varying lighting and weather conditions to different vehicle 

angles and occlusions, the need for resilient AI solutions is quite clear. Clearly, in the modern 

era, as we recognize the complexities of urban life, the pursuit of enhancing the quality of 

life in cities and their neighborhoods has taken center stage (Kourtit et al., 2024). Developing 

such solutions requires not only sophisticated algorithms but also extensive and diverse 

datasets to train and validate these models. The motivation for this study is driven by the 
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transformative potential of AI in image recognition, specifically car identification. By 

addressing the inherent challenges and leveraging advanced AI techniques, this research aims 

to contribute significantly to the fields of urban planning and traffic management and enhance 

the accuracy, efficiency, and applicability of car identification systems, thereby driving 

innovation and improving societal outcomes. With this, the research question comes as: How 

can AI-powered vehicle image recognition enhance urban planning strategies for traffic 

management in cities? So, this study aspires to reach the forefront of this transformative 

journey, providing insights and advancements that will help shape the future of urban 

management and transportation safety. 

1.3 Purpose  

To respond the question from previous section, the primary objective of this dissertation 

is set to explore and enhance the application of Artificial Intelligence (AI) in image 

recognition, aiming to implement a robust AI model capable of accurate and efficient car 

identification under diverse conditions, resorting to Convolutional Neural Network (CNN) 

architecture and the most recent technologies tailored for object identification, also discuss 

concrete cases on early detection of infrastructure degradation. The global and detailed 

objectives go as follows:   

Global Objective 

The general objective of this dissertation is to explore, implement, and evaluate the 

application of Artificial Intelligence (AI) in image recognition, with a specific focus on real-

time car detection, classification, and tracking. The goal is to train a robust AI-based system 

that operates efficiently under diverse environmental conditions, contributing to 

advancements in traffic management and urban planning. 

Detailed Objectives 

1. Model training and Enhancement: 

a. Implement an AI model based on Convolutional Neural Network 

(CNN) architecture and the latest object detection technologies. 
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b. Address challenges in object identification, including variability in car 

appearance (colour, modifications). 

2. Performance Optimization: 

a. Explore techniques to mitigate environmental factors such as low 

lighting, occlusions, and adverse weather conditions. 

b. Improve the model's ability to differentiate between visually similar 

objects. 

3. Evaluation and Validation: 

a. Conduct thorough evaluation using up-to-date datasets, such as 

Cityscapes, Waymo or BDD100k , to ensure accuracy, precision, and 

robustness in real-world scenarios. 

b. Measure performance using relevant metrics, such as mAP (mean 

Average Precision), MOTA (Multi-Object Tracking Accuracy), and FPS 

(Frames Per Second). 

4. Practical Application: 

a. Investigate the practical implications of AI-based car detection and 

classification systems in enhancing urban planning, aiding traffic 

management, and anticipate road degradation. 

b. Analyse integration strategies for deploying the system in real-world 

environments, ensuring scalability, reliability, and ease of adoption. 

5. Real-Time System Implementation: 

a. Develop a web-based interface for real-time visualization of car 

detection and tracking, enabling live monitoring of traffic flow and vehicle 

categorization. 
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1.4 Method 

To achieve the objectives outlined in this dissertation, a systematic and comprehensive 

approach will be employed. The method encompasses several stages (Figure 1.1), from data 

collection and preparation to model training, evaluation, and application analysis. Each stage 

is critical to ensure the robustness and effectiveness of the AI model for car detection. 

 

Figure 1.1: Method for Applying AI in vehicle classification 

By employing these methodologies, this dissertation aims to implement a robust and 

effective AI model for car identification, addressing key challenges and demonstrating 

practical applications that can enhance urban planning in terms of transportation and traffic 

management. 

1.5 Structure of the document 

This work is organised into seven chapters. The first chapter presents the purpose of the 

dissertation, its context, motivation and the process to achieve the desired results. The second 

chapter focuses on the state of the art, presenting the background of AI, the basic concepts 

and explanation on how it works, a brief history and classification of artificial technologies 

considering the capabilities and their components regarding human dissimulation. The 

second part of the chapter presents the core of AI, approaching machine learning in general, 

then diving into deep learning with the concepts, theoretical foundation and evolution to 

neural networks, convolution and recurrent neural networks. The same chapter delves into 

image recognition, explaining the key features of this work, image detection and 

classification, from the concepts, process, to the technologies that support this essential part 

of AI known as computer vision. The last section of the chapter is presented in resume the 

Vehicle Data Collection and Preparation

AI Model Training

Evaluation Metrics

Addressing Challenges

Practical Applications and Implications
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most relevant related works from articles, opinions, technologies blogs and tendencies 

presented by the giants on AI. 

The third chapter of the work explains the general methodology applied to the goals here 

proposed, presenting the requirements of the system, technologies and tools. As for the fourth 

chapter, focuses on the experimental setup, from training the model to be used in the 

prototype and the evaluation through performance metrics observation.  

In the last chapters, it is presented the discussion, practical application and the conclusion, 

analysing the inherent performance metrics and the limitations, considering the objectives of 

the work. Moreover, and an approach on the practical application and impact analysis of AI-

Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management. 

Then, the conclusion of the work and suggestions for future works. 
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2. Artificial Intelligence in Urban Planning and traffic 

management 

In this chapter, a brief context is presented on Artificial Intelligence, from historical 

reference to the theoretical foundation to properly understanding how AI supports urban 

planning through image recognition. 

2.1 Artificial Intelligence and Its Role in Urban Planning  

Urban planners are increasingly using artificial intelligence (AI) to optimise the design 

and management of cities, improving decision-making in urban planning (Ponce et al., 2023). 

These optimisations and management that resorts to the use of AI, bring new concepts in our 

way of life; smart cities, which englobes land use optimisation planning, population growth 

prediction, transportation planning, traffic management, environment sustainability, and 

infrastructure disaster response and prevention. Central to the development of these smart 

cities are Big Data and Artificial Intelligence (AI), two transformative technologies that offer 

new ways of managing and analysing urban environments (Ejaz et al., 2025).  

Current AI development focuses on five main areas of human dissimilation: Human 

learning processing, represented by machine learning (ML); Human thinking processing, 

represented by data mining (DM), Human vision, represent by computer vision (CV), Human 

language and conversation, represented by Natural Language Processing (NLP), and Human 

knowledge – represented by Ontological-based Search Engine (OSE) (Lee, 2020). However, 

AI applications in urban planning rely on Machine Learning, Computer Vision, Natural 

Language Processing, Predictive Analytics, and additionally Automation and Optimization.  

In cities, ML models are used to predict traffic flow, forecast energy usage, or identify 

areas at risk of crime. As more data is collected, AI models continuously improve their 

accuracy and efficiency (Ejaz et al., 2025). AI-driven predictive analytics helps mitigate 

climate change impacts and urban inequalities by forecasting disasters, infrastructure risks, 

and socio-economic trends for proactive planning. Moreover, researchers emphasizes its 

effectiveness in forecasting congestion, optimizing the movement of vehicles, and promoting 

more flexible transportation networks (Igorevich Rozhdestvenskiy & Poornima, 2024). 
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Computer vision (CV), an integral component of AI, can be defined as a technological field 

that endows computers with the capability to analyse and extract information from visual 

data, such as images or videos, thereby opening new frontiers for image processing and 

analysis across many disciplines (Marasinghe et al., 2024). It helps with the extraction of 

useful information from image and video data, for better comprehension of our environment. 

Cutting-edge urban research has employed modern tools including social platforms, mobile 

devices, sensor networks, and street-level imagery to gather more extensive datasets and 

study city dynamics. CV applications in urban planning rely on various types of data sources, 

such as satellite imagery, street view images, photographs, social media images, video data, 

and so on, used to identify and understand urban patterns, dynamics, character, growth, land 

use change, and socioeconomic challenges (Marasinghe et al., 2024). Automation and 

Optimization: AI can automate routine urban tasks, such as traffic signal control or waste 

management, by adjusting systems based on real-time data (Ejaz et al., 2025).  

In addition, according (Ejaz et al.,2025) effective infrastructure management is crucial for 

ensuring cities function efficiently. By implementing predictive maintenance through real-

time monitoring of infrastructure such as roads, bridges, and others distribution systems. 

2.2 Artificial Intelligence for traffic management and Smart Cities 

The transportation sector is one of the major sectors of the smart city, and over the past 

several decades, there have been widespread traffic-related issues due to the fast population 

growth and the corresponding rise in the number of vehicles (Saini & Sharma, 2025). Modern 

cities explore the capabilities of AI for enhancing traffic and transportation systems. From 

predictive algorithms to smart traffic lights, AI systems offer the potential to optimize traffic 

flow, reduce delays, and enhance commuter experiences (Francisco et al., 2024). According 

(Ogunkan & Ogunkan, 2025), Singapore and New York City have implemented  AI-driven 

systems for Real-time traffic optimization , and have achieved good results,  reducing  

congestion and improving  mobility.  

Intelligent traffic management is applied in transportation to regulate and maintain the 

flow of vehicles and people, to avoid congestion, accidents and other inconveniences in 

transportation. Intelligent Transportation Systems (ITS) have started to incorporate AI for 
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better traffic signal optimization, improving vehicular flow at intersections, where studies 

have demonstrated a 25% reduction in congestion through reinforcement learning-based 

adaptive traffic lights (Francisco et al., 2024). The main domains of these systems are as 

follows: 

 

Figure 2.1: Components of Intelligent Traffic management System,  adapted from (Saini & Sharma, 2025) 

Smart traffic management systems leveraging AI and IoT are transforming urban mobility 

by addressing key challenges like congestion, accidents, and inefficient parking. In Saini & 

Sharma (2025), is highlight several implementations of ITMS as presented on Figure 2.1:  

- Traffic speed prediction, where AI algorithms, such as those in Singapore’s Smart 

Mobility 2030 program, analyze real-time data to optimize traffic flow, reducing delays 

during peak hours.  

- Traffic congestion prediction systems, like Los Angeles’ ATSAC, use IoT sensors and 

machine learning to anticipate and mitigate bottlenecks, cutting peak-time delays by up to 

13%.  
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- Incident detection and classification, where AI-powered systems, such as New York 

City’s Connected Vehicle Pilot, quickly identify accidents or disruptions, improving 

emergency response times and minimizing road hazards.  

- Smart parking solutions, like Barcelona’s IoT-enabled app, guide drivers to available 

spots using real-time data, reducing unnecessary circling and lowering emissions by 30%.  

- Traffic prediction models, such as those in Beijing and Amsterdam, forecast vehicle 

flow and adjust signal timings dynamically, shortening travel times and easing congestion.  

- Vehicle classification technologies, including automated license plate recognition 

(e.g., NYC’s toll system) and AI-powered cameras (e.g., Shenzhen’s traffic monitoring), help 

enforce regulations and streamline toll collection, enhancing efficiency. 

AI systems help build accurate data by monitoring the volume of traffic, vehicle flow 

density and the environment and infrastructural impact of vehicles on the roads. AI analyzes 

the necessary data to predict when maintenance is required, supporting studies like (Wubuli 

et al., 2025), on determining of preventive highway maintenance, (Faqih Seknun et al., 2025) 

on assessment of road maintenance to reduce potential environmental  damage, and more. 

2.3 Machine learning and Computer Vision 

The field of computer vision has experienced significant growth due to the proliferation 

of machine learning technologies (Zhu & Shen, 2025). Computer Vision is about how 

computers deal with images, using the most advanced of machine learning features like deep 

learning, to perform tasks such as image processing, image classification, object detection, 

object segmentation, image colouring, image reconstruction, and image synthesis. Computer 

Vision techniques are widely applied across urban research, with methods tailored to specific 

study goals, as we can see in Figure 2.2.  
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Figure 2.2: Application of CV techniques for different urban planning tasks. 

Among these, in monitoring and evaluating, we have the essential task for this work:  

- Image classification and detection algorithms for issue identification and data 

analysis.  

- Object tracking for monitoring in implementation/evaluation phases.  

- Scene classification and feature extraction for diverse analytical purposes, enable 

robust extraction of spatial and behavioral insights from visual data, supporting 

various stages of urban planning. 
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According to (Cernadas, 2024) computer vision applications involve the integration of 

elements such as in the table 2.1: 

Table 2.1: Elements of Computer Vision. 

Support for 

data recording 

Type of input 

data 

Machine vision-

related aim of the 

application 

Type of 

processing 

Experimental 

testing 

Microscopes; 

UAVs; 

satellites; 

robots; MRI, X-

ray, and CT 

devices; and 

others 

2D images, 

videos, radar, 

LIDAR 

Detection or 

recognition, image 

segmentation, image 

classification, 3D 

modeling or 

reconstruction, 

object tracking, 

defect detection, 

object counting or 

measurements from 

images, and visual 

inspection, among 

others.  

nonlearning-

based 

methods, 

learning-

based 

methods, and 

hybrid 

methods 

Datasets 

Machine learning encompasses three primary approaches: supervised, unsupervised, and 

reinforcement learning. Supervised learning uses labeled data to make predictions, with 

techniques like linear regression modeling straightforward relationships, and nonlinear 

regression handling more complex patterns. Unsupervised learning, in contrast, works with 

unlabeled data to uncover hidden structures through clustering (grouping similar data points), 

dimensionality reduction (simplifying data while preserving key features), and generative 

models (creating new, similar data). Finally, reinforcement learning operates on a trial-and-

error basis, where an agent learns optimal actions by interacting with the environment and 

receiving feedback in the form of rewards, making it ideal for applications like game AI and 

robotics. Together, these methods provide powerful tools for extracting insights and building 

intelligent systems across diverse domains. 

2.4 Deep Learning 

Deep Learning(DL) is a branch of Machine Learning that focuses on artificial neural 

networks with multiple layers of interconnected neurons (Krauss, 2024), and the depth is 

defined by the numbers of layers. As in the brain, the neuron is also the fundamental 

processing unit in many areas of AI (Krauss, 2024). In recent years, deep learning (DL) 
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models have yielded a new generation of computer vision methods, such as convolutional 

neural networks (CNN) and transformers. CNNs are employed to analyze traffic image feeds, 

detecting congestion by recognizing patterns such as vehicle density, movement, and speed, 

making them effective for spatial pattern recognition in traffic data (D et al., 2025), and have 

become the standard DL-based approaches for many recognition tasks.  

2.4.1 Convolutional Neural Networks 

Convolutional neural network (CNN) uses weight sharing strategy to explore similar 

structures that occur in different locations in an image. Through sharing the convolutional 

weights locally for an entire image, this drastically reduces the amount of parameters that 

need to be learned and render the network equivalent with respect to translations of the input 

(i.e., the number of weights no longer depends on the size of input image) (Jiang et al., 2019). 

In CNN, convolutional layers work by gathering the input data, then filtering to detect 

specific features like edges, corners, or textures. Then a complete check on the data for 

similarities with the filters, the convolution process, producing a matching table or feature 

map. Then, the results are passed through an activation function that decides which patterns 

to keep. 

𝑋𝑘
𝑙+1 = 𝜎(𝑊𝑘

𝑙 × 𝑋𝑙 + 𝑏𝑘
𝑙 ) 

Formula 2.1 

The formula says: take the input  𝑋𝑙, apply the convolution    𝑊𝑘
𝑙, add the bias 𝑏𝑘

𝑙 , and 

pass it through the activation function 𝜎  to get the next layer's output 𝑋𝑘
𝑙+1. As we can see 

summarised in Figure 2.3. 

   

Figure 2.3: Process of a convolutional neural network. 

The basic architecture of a convolutional neural network is shown in the figure below. 

Slide kernels over the 
input. 

Detect patterns. 

Pass the results 
through a function to 
decide which patterns 

matter. 

Repeat for deeper 
layers to learn more 
complex features.
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Figure 2.4: Convolutional Neural Network (CNN) architecture (Abubakr et al., 2024) . 

The core component of CNNs is the convolutional layer, which is always at least their 

initial layer (Abubakr et al., 2024). As presents the figure 3, CNNs start with the convolution 

layer, applying a filter (kernel) to the input image. This kernel strides over the image, block 

by block, where each block is a collection of pixel cells. During this process, it performs 

matrix multiplication, which results in a lower resolution image. Typically, a CNN is 

structured in two main sections, feature extraction and the classification process. A basic 

CNN for classification task is made up by a convolution layer, Pooling layer, Activation 

function, Batch normalisation, Dropout, Fully connected layer. 

Pooling layer: In short, the pooling procedure, like the convolution process, can be 

thought of as a pooling function without weights, in which the input feature mapping group 

is divided into many regions and each area is pooled to yield a value as a generalisation of 

this region (Zhao et al., 2024). 

Activation function: An activation function called a rectified linear unit (ReLU) is one of 

the most popular DL activation functions that addresses the problem of vanishing gradients 

and adds the property of nonlinearity to a DL model (Abubakr et al., 2024), it is a 

mathematical operation applied to the output of a filter. It serves a crucial role in neural 

networks by enhancing their representational power and learning ability. In a neural network, 

each layer’s input and output involve a linear summation process, meaning the output of one 

layer is essentially a linear transformation of its input. The activation function’s primary goal 
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is to provide the model with the nonlinearity property (Abubakr et al., 2024). This enables 

the neural network to approximate complex nonlinear functions, expanding its applicability 

to a broader range of nonlinear problems. 

Batch normalisation: The whole idea of gradient descent is to minimise the objective 

function by iteratively updating the parameters in the opposite direction of the gradient of the 

objective function (Zhao et al., 2024). Gradient descent is an optimization technique that 

minimizes an objective function by iteratively adjusting parameters in the opposite direction 

of its gradient (since the gradient points in the direction of steepest ascent). The algorithm 

works by randomly initialized parameter value, then compute the gradient of the objective 

function at that point. Update the parameters by moving in the negative gradient direction, 

and repeat this process until the function value converges (changes negligibly) or a 

predefined iteration limit is reached. 

Dropout: it is a regularisation technique that improves generalisation by randomly 

deactivating network units or connections with a fixed probability during training. This 

process creates multiple "thinned" network variants, and the resulting trained network, with 

its optimized weights, serves as an effective approximation of the ensemble of these variants 

(Figure 2.5b).  

Fully connected layer: A fully connected layer is a global operation, unlike convolution 

and pooling, and is usually used at the end of a network for classification. Each neuron in the 

fully connected layer connects to all neurons in the previous layers (Figure 2.5a). After 

convolution and pooling extract sufficient image features, the fully connected layer handles 

classification. 
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Figure 2.5: Distinction  between a fully connected layer and dropout layer (Zhao et al., 2024) 

Typically, CNNs flatten the final feature maps into a vector, which is then passed to a fully 

connected layer and output layer for classification. For instance, in a three-class image 

problem, the output layer would have three neurons. The fully connected layer also combines 

local, class-specific features from earlier convolution or pooling layers 

In summary, CNNs process data through five key layers; pooling summarizes feature map 

regions, activation functions introduce nonlinearity for complex pattern learning, batch 

normalization stabilizes training by optimizing gradient descent, dropout prevents overfitting 

through random neuron deactivation, and fully connected layers integrate features for final 

classification; all working together to enable efficient extraction, transformation, and 

classification of hierarchical features from input data." 

2.4.2 Image classification 

Image classification is an algorithm that predicts a class label given an input image (Bird 

& Lotfi, 2024). CNNs represent one of the most powerful deep learning approaches for image 

classification. The main process of image classification includes preprocessing the original 
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image, extracting image features, and classifying the image using a pre-trained classifier, in 

which the extraction of image features plays a pivotal role (Zhao et al., 2024).  

 

Figure 2.6: Data flow diagram for image classification (Zhao et al., 2024). 

In Figure 2.6, the input image is processed by the CNN model which extracts features and 

generates predicted values, these are compared to the true values using a loss function 

(Softmax) to calculate the error, if the error exceeds the allowable range the model updates 

its parameters by computing the error gradient and adjusting neuron weights, repeating this 

process until the error falls within range, at which point the final image classification is 

output. For this, it is important for the data (image) to be effectively annotated (labelled). 

Where, image labelling consists in mapping visual features to semantic and spatial labels 

effectively describing image content, with "label" and "annotation" often used 

interchangeably in the literature (Sager et al., 2021). It comprises five steps: 

1. Data Collection 

2. Labelling(annotation) 

3. Postprocessing 

4. Quality assessment 
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5. Data exportation 

The first step of image labelling is Data collection, which is gathering the images or 

videos, depending on the data, and describing the image with sentences, keywords, 

taxonomies, ontology, and others. This process can be done manually or automated by 

software (Image Labelling Software - ILS), depending on the goals. The figure below 

illustrates the concept of labeled data. 

 
Figure 2.7: Example of labelled and unlabelled data. From (Serrano, 2021) 

Let us understand that annotated data is data that comes with a tag or label, and the label 

can be a type or a number. As for unannotated or unlabelled data, it is the data that comes 

with no tag. Assessing the quality of the labelling is important for the performance of any 

supervised model, by interpreting errors and similarities to deal with bias. For this 

assessment, ILS like labelme, Roboflow, and others can be used.  

2.4.3 Object detection 

Object detection serves as a foundational computer vision task, enabling solutions for 

more advanced applications like image segmentation, object tracking, and activity 

recognition (Zhao et al., 2024). In recent years, researchers have concentrated on devising 

CNN-based object detectors to achieve real-time detection (A. Wang et al., 2024a). The 

process goes through training a classifier to distinguish the desired object and non-desired 

object in fixed-size image windows, assigning high scores to desired object and low scores 

to non-desired object. 

There are two classes of deep learning object detection, the two-stages methods and one-

stage methods, as we can see on the figure: 
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Figure 2.8: Two-stages detectors (Zhao et al., 2024). 

 
Figure 2.9: One-stage detector, from (Zhao et al., 2024). 

Two-stages detectors 

In Figure 2.8, we have the basic workflow of two-stage object detectors where first an 

input image is processed, then region proposals are extracted to identify potential object 

locations, after which CNN features are computed for each proposed region, and finally these 

features are classified to determine the object categories, demonstrating the sequential 

localization-then-classification approach characteristic of architectures like R-CNN, as 

shows the Figure 2.10; Faster Region-based Convolutional Neural Network (Faster R-CNN) 

which is an evolution of Fast Region-based Convolutional Neural Network (Fast R-CNN) as 

we can see on figure 2.11; Mask R-CNN and Spatial Pyramid Pooling-Net (SPP-Net). 

 

Figure 2.10: R-CNN Architecture(Neha et al., 2024).. 
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Figure 2.11: Fast R-CNN architecture (Neha et al., 2024). 

One-stage detector 

The one-stage detector, Figure 2.9, begins with an input image which is processed through 

feature extraction to generate hierarchical representations, then directly predicts both the 

bounding box coordinates for object locations and category probabilities for object 

classification in a single unified step, increasing speed by bypassing region proposals (Neha 

et al., 2024). Models like Single Shot MultiBox Detector (SSD) and You Look Only Once 

(YOLO) were developed achieving a high inference speed, as we can see in Table 2.2. 

However, compared to two-stage detectors, the detection accuracy is less accurate (Zhao et 

al., 2024).  

For comparison purposes, the table below shows the percentage of the mean Average 

Precision(mAP) for different detectors. 

Table 2.2: Quantitative Performance Comparison of Object Detection Models on different Dataset (Zhao et al., 2024). 

Model Type Pascal 

VOC 

(mAP) 

COCO 

(mAP) 

ImageNet 

(mAP) 

Open 

Images 

(mAP) 

Inference 

Speed (FPS) 

Model 

Size 

(MB) 

RCNN 2-stage 66% 54% 60% 55% ~5 200 

Fast 

RCNN 

2-stage 70% 59% 63% 58% ~7 150 

Faster 

RCNN 

2-stage 75% 65% 68% 63% ~10 180 

Mask 

RCNN 

2-stage 76% 66% 69% 64% ~8 230 

YOLO 1-stage 72.5% 58.5% 61.5% 57.5% ~45–60 145 

SSD 1-stage 75% 63.5% 66.5% 61.5% ~19–46 145 

 

Architectures like YOLO and SSD that uses one-stage detectors, it is prioritized speed as 

for they are often used in real-time applications. YOLO (You Only Look Once) has emerged 

as a key player in real-time object detection, and it exceeds other models in inference speed. 
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It is built on cutting-edge advancements in deep learning and computer vision, offering 

unparalleled performance in terms of speed and accuracy (Ultralytics, 2025).  

2.5 Traffic Volume Impact on the Roads 

Average daily traffic (ADT) and average annual traffic (AAT or LRH) are two types of 

traffic data important in transportation planning (Putri et al., 2024). Where, according to Putri 

et al. (2024), ADT refers to the number of vehicles that pass an observation point for 24 

hours, while LHRT is the number of vehicles that pass an observation point for 24 hours 

calculated throughout the year. The capacity of road pavement construction is in terms of the 

number of repetitions (trajectories) of the load of the axis of the traffic wheel in a standard 

axle load unit known as the ESAL (Equivalent Single Axle Load) unit (Solahudin & Susanto, 

2025). Where, to measure the damage that truck axles cause to roads, experts use a standard 

unit. This unit represents the damage from a single axle carrying 18,000 pounds (which is 

about 8 tons) (Putri et al., 2024; Solahudin & Susanto, 2025), and it is called "damage value 

of 1.", or Vehicle Damage Factor (VDF), essential for determining pavement thickness. 

The AASHTO 1993 design method counts all the heavy vehicles that will use a road over 

its lifetime (W18)). Since traffic isn't spread evenly, it uses simple rules to focus only on the 

trucks in the busiest lane, which is the one that determines how thick the road needs to be. 

Table 2 analyzes how different types of trucks contribute to road damage over a year, where 

car is categorized by classes. Table 2.3 also considers truck load as critical factor; A single 

loaded truck like a 7a does thousands of times more damage than an empty one of the same 

class. This is quantified using "VDF" (Vehicle Damage Factors) and summed up into a final 

"ESAL" number, which represents the total wear and tear. The key takeaway is that a small 

number of overloaded heavy trucks (contributing to a total of 10,922 ESALs) are responsible 

for the overwhelming share of the pavement damage, which is equivalent to over 626,000 

passes of a standard 18,000-pound axle. 

Table 2.3: Overload ESAL and W18 values calculation for 2021, from (Putri et al., 2024) 

Vehicle 

Class 

Vehicle 

Axle 

Fill/Empty LHR 

2021 

Standard 

LHR 

2021 

Overload 

VDF 

Standard 

VDF 

Overload 

ESAL 

2021 

2 1.1 Standard 3125 0 0.0005 0.0005 1.56 
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3 1.1 Standard 783 0 0.0007 0.0007 0.55 

4 1.1 Standard 595 0 0.0286 0.0286 17.01 

5a 1.2 Standard 4 0 2.6 2.6 10.63 

5b 1.2 Standard 7 0 2.6 2.6 19.24 

6a 1.2 L Fill 976 58 0.3 0.64 375.32 

6a 1.2 L Empty 309 0 0.1 0.004 30.86 

6b 1.2 H Fill 438 55 1 15.26 1317.99 

6b 1.2 H Empty 153 0 0.7 0.04 107.26 

7a 1.22 Fill 416 55 10.1 11.74 4838.61 

7a 1.22 Empty 165 0 2.7 0.02 444.73 

7b 1.2 + 22 Fill 36 5 2.2 8.04 118.83 

7b 1.2 + 22 Empty 16 0 1.4 0.01 22.62 

7c 1.2 – 22 Fill 243 32 8.5 25.59 2885.36 

7c 1.2 – 22 Empty 38 0 5.2 0.08 196.41 

7c 1.2 – 222 Fill 64 8 3.3 22.66 399.95 

7c 1.2 – 222 Empty 13 0 2.5 0.11 31.64 

7c 1.22 - 222 Fill 10 1 4.7 29.97 90.78 

7c 1.22 - 222 Empty 4 0 3.2 0.18 13.08 

TOTAL ESAL Overload 10922.38 

W₁₈ Overload 2021 626066.63 

To determine the percentage of traffic growth (i) during the service life of a road plan 

using the AASHTO (1993) method (Putri et al., 2024), we can use the following formula: 

𝑖 = (
𝐴𝐷𝑇𝑛

𝐴𝐷𝑇0
)

1
𝑛 − 1 

Formula 2.2 

The cumulative ESAL can be computed as: 

𝐸𝑆𝐴𝐿 =  ∑(𝐴𝐷𝑇𝑐 ∗ 𝑉𝐷𝐹𝑐 ∗ 𝑌)

𝐶

  

Formula 2.3 

 

Where ADTc is the Annual Daily Traffic for vehicle class c, VDFc is the Vehicle Damage 

Factor (based on axle type and weight), and Y is the number of design years. 

The remaining pavement life can be estimated as: 



AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management 

 

24 

 

𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐿𝑖𝑓𝑒(%) = 100(1 −
𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑆𝐴𝐿

𝐷𝑒𝑠𝑖𝑔𝑛 𝐸𝑆𝐴𝐿
)  

Formula 2.4 

2.5.1 An AI & Computer Vision Approach for Vehicle Counting and 

Classification 

AI and computer vision system, using real-time object detection models, it identifies each 

vehicle and assigns it a unique ID. Sophisticated tracking algorithms then follow each 

vehicle's movement frame-by-frame, ensuring the same vehicle is never counted twice as it 

passes through the monitored area. 

The system classifies each vehicle into predefined categories (car, truck, bus, motorcycle) 

and tracks its movement to determine traffic direction and count. Based on this classification 

and the established Vehicle Damage Factors (VDFs) for each class, the system automatically 

calculates the Equivalent Single Axle Load (ESAL), providing a direct metric for assessing 

the pavement impact of the observed traffic flow. Additionally, the system calculates the 

average speed of vehicle according to the direction of the vehicles. 

Finally, all this analyzed information is automatically saved into CSV file or database. 

This directly generates the traffic data needed for urban planning and traffic analyses.  

2.6 Related Works 

Significant research such as Zhao et al. (2024) and Neha et al. (2024),  have explored the 

integration of artificial intelligence (AI) and computer vision (CV) in car detection, 

classification, and tracking. Studies by Yigitcanlar et al. (2020) and Abubakr et al. (2024) 

demonstrate the utility of such systems in traffic flow analysis, congestion management, and 

infrastructure planning.  Kamrowska-Załuska (2021) emphasized the importance of big data 

mining and AI in studying dynamic urban systems, highlighting the role of image recognition 

in mapping traffic patterns and enabling smart city innovations. The ANST model, developed 

by Nadarajan & Sivanraj, (2022), enhances traffic forecasting by merging LSTM networks 

with attention mechanisms, effectively incorporating spatiotemporal relationships and 

environmental conditions for superior predictive performance. By integrating street view 
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images and urban networks, Yap et al (2023), assessed active mobility, leveraging deep 

learning to examine the impact of traffic environment factors on subjective choices. To 

contend traffic congestion on urban networks, a recent DQL framework by H. Wang et al 

(2023), using partial detector inputs showed 3.9-22% improvements over conventional 

methods in real-world validation. Latest study by D et al (2025) AI-based traffic systems 

combine real-time data and machine learning for accurate congestion detection (94.89% 

accuracy) and adaptive signal control, significantly improving traffic flow over traditional 

methods. 

Recent advances in vehicle recognition have been driven by YOLO (You Only Look 

Once) architectures, which enable real-time object detection critical for urban traffic 

management. A work by Valdovinos-Chacón et al2025) presented a YOLO-based system that 

achieves 96% vehicle detection accuracy for adaptive traffic light control, demonstrating 

potential for Latin American cities, combining real-time object detection with IoT 

coordination to optimize intersection timing. Tracking algorithms like ByteTrack, Botsort 

and DeepSORT have shown promise. ByteTrack's innovative association of low-confidence 

detections demonstrates significant improvements (up to +10 IDF1) for urban traffic 

monitoring, achieving real-time performance (30 FPS) with 80.3 MOTA accuracy (Zhang et 

al., 2022), which is  particularly valuable for smart city applications. 

Table 2.4: Related work summary. 

Authors Year Contribution 

Zhang et al. 2022 ByteTrack's innovative association of low-

confidence for object tracking. 

Nadarajan & Sivanraj 2022 Enhancement of traffic forecasting by merging 

LSTM networks with attention mechanisms. 

Abubakr et al. 2024 Utility of AI and Computer vision in traffic flow 

analysis, congestion management, and 

infrastructure planning. 

Zhao et al.  2024 Integration of artificial intelligence (AI) and 

computer vision (CV) in car detection, 

classification, and tracking. 

Valdovinos-Chacón et al. 2025 Presented a YOLO-based system that achieves 

96% vehicle detection accuracy for adaptive 

traffic light control. 

D et al.  2025 Congestion detection with AI-based traffic 

systems that combine real-time data and machine 

learning. 
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Table 2.4 summarizes the latest relevant contributions on vehicle recognition with AI, 

however, most existing work focuses on either traffic analysis or infrastructure monitoring in 

isolation. Few studies comprehensive address how vehicle recognition can directly inform 

urban planning decisions for predictive roads maintenance, a gap this research aims to bridge 

by developing an integrated framework that connects real-time vehicle analytics with long-

term urban development strategies. 
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3. System Design and Methodology 

3.1 Research Methodology and Development Approach 

This work employs the Design Science Research (DSR) methodology, based on De Sordi, 

(2021), to design and evaluate a vehicle tracking system framework. DSR is chosen for its 

focus on developing IT artifacts that solve practical organizational issues while maintaining 

scientific rigor.  

The implementation of DSR followed a structured three-phase development approach, as 

illustrated in Figure 3.1. First, a computer vision model was trained on an annotated dataset 

to establish the core detection capability. Second, this model was implemented and optimized 

within a functional software prototype. Third, the system was extended to extract, analyse, 

and persist useful traffic information. 

 

Figure 3.1: Development approach 

This process ensured the creation of an artifact that fulfils the need for real-time 

monitoring of vehicles and road usage. The practical application of this work shows its 

relevance on smart cities planning and intelligent transportation, considering that vehicle 

detection, tracking and counting can help urban planning and predictive maintenance of 

infrastructures by analysing the volume of traffic, improving the flow of vehicle and the 

impact on the road degradation. 

3.2 System requirements 

To guide the development of the system, a comprehensive set of requirements was 

established covering functional capabilities, quality attributes, and domain-specific 

constraints. These requirements ensure the system meets both technical objectives and 

practical urban planning needs. 

- Functional requirements 

Train a CV model Implement Results
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Table 3.1: Functional requirements of the system 

Code Requirements  Description  

FR01 Vehicle detection  The system must detect accurately vehicles on 

video frames 

FR02 Object tracking The system needs to rigorously maintain identity 

of vehicles across frames 

FR03 Counting vehicles The system will define a line to count the vehicles 

that cross it. 

FR05 Different data 

source 

It needs to be capable of processing data from 

different sources, stream and recorded data. 

FR06 Calculate Esal The system needs to calculate daily ESAL 

variable 

FR07 Save reports It needs to create a database for recording the 

daily traffic volume data 

FR07 Web Interface The system must provide a web interface that 

displays the processed video with the detections 

and counts updated in real time. 

- Non-functional requirements 

Table 3.2: Non-functional requirements. 

Code Non-Functional Requirement Description 

NFR01 Performance:  The system must process a minimum of 15 

frames per second (FPS) on an Intel i5 CPU 

and NVIDIA RTX 1070 GPU. 

NFR02 Reliability:  The system must maintain availability 

greater than 99% during operation, with error 

handling for unstable video sources. 

NFR03 Maintainability The system must have high cohesion and low 

coupling, with a maintainability index greater 

than 70 (measured by tools such as 

SonarQube). 

NFR04 Scalability The architecture must support multiple 

concurrent tracing sessions, with resource 

isolation. 

NFR05 Low Latency 

 

End-to-end latency (capture from frame to 

display on the interface) must be less than 

500 milliseconds. 

- Domain Requirements 

Table 3.3: Domain requirements 

Code Domain-Requirements  Description  

DR01 Vehicle Classes Recognize the classes: car, truck, bus and 

motorcycle.  

DR02 Directional traffic analysis Up/down for horizontal lines, left/right for 

vertical lines. 
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DR03 Pavement impact 

estimation 

ESAL per class with domain-specific Vehicle 

Damage Factors (VDFs). 

DR04 Speed estimation Speed estimation: approximate scene-based 

conversion (pixels→meters) for indicative 

averages. 

These requirements collectively ensure the development of a technically robust system 

specifically designed for urban intelligence applications. They establish the foundation for 

delivering accurate, real-time traffic analytics to support data-driven urban planning and 

predictive maintenance, directly informing the architectural design that follows. 

3.3 Proposed System Architecture 

This section outlines the architectural structure principles and patterns adopted for the 

vehicle detection and tracking prototype, ensuring a robust, maintainable, and scalable 

system. The architecture is designed to align with the domain requirements, emphasizing 

modularity, testability, and performance optimization. 

3.3.1 Architectural Principles and Patterns 

Clean Architecture 

The system is designed according to Clean Architecture principles (Lano & Yassipour 

Tehrani, 2023), ensuring that business rules remain independent of frameworks, databases, 

and external systems. This separation improves maintainability and testability by isolating 

the core logic from infrastructure dependencies. Applying Domain-Driven Design 

(DDD)(Junker & Lazzaretti, 2025; Kapferer & Zimmermann, 2020), enables the creation of 

a rich domain model for vehicle detection and counting, supported by a shared ubiquitous 

language between developers and domain experts. The use of Command Query 

Responsibility Segregation (CQRS) further enhances performance by separating read 

operations (e.g., metric queries) from write operations (e.g., frame processing) 

(«Implementing Command Query Responsibility Segregation (CQRS) in Large-Scale 

Systems», 2024), allowing each to be independently optimized and scaled for real-time 

processing. 
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The architecture also follows the Ports and Adapters (Hexagonal) pattern, which 

decouples the application’s core from external systems such as hardware interfaces, 

databases, or APIs, thereby facilitating component substitution without impacting the core 

logic. In addition, the system adopts an Event-Driven Architecture, where domain events 

propagate significant occurrences, such as vehicle crossings, across components. This 

promotes loose coupling, extensibility, and integration with external systems, including 

traffic management or analytics platforms. Collectively, these architectural patterns ensure a 

modular, scalable, and maintainable system for vehicle detection and tracking, while 

providing flexibility for future enhancements. 

3.3.2 Structural Diagrams 

Figure 3.2 shows the main components and data/control flows of the proposed system, 

where the browser UI communicates with the FastAPI backend over WebSocket for real-time 

frames and metrics and via REST for configuration and exports, while the vision pipeline 

(FrameReader → YOLO → BYTETrack → VehicleCounter) processes frames from 

webcams, uploaded files, or YouTube via yt-dlp to produce counts, directional speeds, and 

ESAL summaries. 
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Figure 3.2: Component diagram of the real-time vehicle tracking system (Frontend, FastAPI backend, vision pipeline, 
sources, and outputs) 

The component diagram illustrates a streaming-first design: frames flow from the selected 

source into the vision pipeline where YOLO performs detection, BYTETrack maintains 

identities, and VehicleCounter computes per-class and per-direction counts, speeds, and 

ESAL. The backend serves both static assets and dynamic reports (CSV/TXT), and logs 

MOT-style outputs for evaluation. The counting line can be set to auto or manual mode via 

REST, and changes propagate at runtime to maintain coherent direction metrics. 
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The sequence traces user-initiated actions (Start/Stop, configuration updates) through the 

backend’s streaming pipeline and back to the browser via WebSocket, showing the per-frame 

loop and report generation, as seen in Figure 3.3. 

 

Figure 3.3: Main sequence of operations from user action to real-time processing and reporting. 

- User initiates processing (Start via uploaded file, webcam, or YouTube) and may later 

Stop or change the counting line. 

- Frontend (app.js) ensures a WebSocket connection and sends simple control messages 

(start/stop); REST endpoints handle configuration and exports. 

- Backend (FastAPI) spawns a processing task that opens the source and runs the vision 

pipeline. 

- Vision pipeline: FrameReader acquires frames; YOLO detects vehicles; BYTETrack 

assigns track IDs; VehicleCounter updates counts, directions, speed samples, and ESAL. 
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- Backend overlays, packages a JPEG frame plus metrics, and pushes them over 

WebSocket; the UI renders the image and updates the merged metrics table. 

- When the counting axis/position changes, backend applies the config and resets 

directional metrics to preserve semantic correctness. 

- On Stop or stream end, backend saves a TXT report and supports CSV export from 

/export_csv, returning a downloadable URL. 

3.3.3 Core Domain Models 

This section describes the main domain objects that encapsulate the business logic of 

traffic counting, directional analysis, and pavement impact estimation. 

1. VehicleCounter (backend/app.py): 

- Purpose: Central domain service that turns tracked object motion into domain 

metrics: per-class totals, direction splits (up/down or left/right), average speeds, and 

ESAL. 

- Core state: 

 previous_positions, previous_times: last known center and timestamp 

per track_id. 

 counted_ids: track_ids already counted to prevent double counts. 

 vehicle_counts: totals per class (car, truck, bus, motorcycle). 

 up_down_counts, left_right_counts, vehicle_direction_counts: 

direction-split counts per class. 

 counted_speeds_* (up/down/left/right/all): speeds recorded at the 

moment of crossing for accurate averaging. 

 motion_dx_sum, motion_dy_sum, motion_samples: motion statistics 

to infer dominant axis. 

 last_counting_axis: last effective axis used for counting in this session. 

- Behavior: 

 update(track_id, center_x, center_y, class_name, counting_axis, 

counting_line_pos, timestamp, frame_dim) 
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 Estimates direction along active axis; detects single crossing 

per track and updates all aggregates. 

 Records “counted-at-crossing” speeds and contributes to 

motion statistics (dx/dy). 

 get_total_counts() 

 Returns a merged metrics view: overall totals, ESAL by class 

and total, per-direction counts and ESAL, and average speeds 

(overall and by direction). 

 get_direction_counts(), reset_directional_metrics(), 

get_dominant_axis(min_samples) 

 Direction-aware views, safe axis switching (resets directional 

aggregates), and automatic axis selection based on observed 

motion. 

- Contract (inputs/outputs): 

 Input: track_id (int), object center (x, y), class_name, counting_axis 

(‘x’|‘y’), line position (px), timestamp, frame_dim. 

 Output: optional {track_id, class, direction} upon a confirmed 

crossing; totals via get_total_counts(). 

2. Counting Configuration (runtime model): 

- counting_config = { axis: 'x'|'y'|null, pos_frac: 0.0–1.0 } 

- Semantics: null axis = auto; pos_frac is normalized position. Changing the effective 

axis triggers reset_directional_metrics() to keep direction semantics consistent. 

- Companion: counter.last_counting_axis captures the runtime-effective axis used in 

the current processing loop. 

3. Detection/Tracking Entities (conceptual): 

- Detection: {box (x1,y1,x2,y2), class_name, conf} 

- Track: detection + stable track_id assigned by the tracker, used by VehicleCounter 

to compute motion and crossings. 

4. ESAL Model (calculate_esal): 

- Vehicle Damage Factors (VDF): car=0.0005, motorcycle=0.0001, bus=0.15, 

truck=2.0. 
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- ESAL per class = count × VDF; totals computed both overall and per direction for 

maintenance planning. 

3.3.4 Runtime Components 

This subsection summarizes the concrete components that execute the pipeline and 

expose the system at runtime. 

1. Frontend UI (frontend/) 

- templates/index.html: Controls (Start/Stop/Reset, Upload, YouTube, Counting 

mode/position) and merged metrics table (counts, ESAL, average speeds by 

direction). 

- static/js/app.js: WebSocket client to receive frames/metrics; sends actions (start, 

start_youtube, start_camo, stop, reset_counts); REST for configuration 

(/set_counting_line, /get_counting_line) and exports (/export_csv, /cameras). 

- static/css/styles.css: Visual layout and readability. 

2. FastAPI Application (backend/app.py) 

- Endpoints: 

 GET /: render UI; GET /cameras: quick camera listing. 

 POST /upload: persist file; POST /set_counting_line, GET 

/get_counting_line: runtime counting config. 

 GET /export_csv: build CSV and return download URL via /reports. 

- WebSocket /ws/detect: 

 Receives control actions: start (uploaded), start_youtube (yt-dlp), 

start_camo (webcam), stop, reset_counts. 

 Streams base64-encoded JPEG frames and metrics (counts, direction 

metrics, ESAL, average speeds, counting axis, last count direction). 

3. Vision Pipeline (app.py): 
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- FrameReader: threaded cv2.VideoCapture with a bounded queue; supports 

path/URL/camera index. 

- YOLO (Ultralytics): loads yolo11n.pt; fuses and warms up; uses CUDA FP16 when 

available; constrained by INFER_SIZE and MAX_DET. 

- BYTETrack (via Ultralytics tracker): maintains stable track IDs for counting. 

- VehicleCounter: translates tracks into counts, direction metrics, average speeds, and 

ESAL. 

4. Sources and Resolvers 

- Uploaded videos (backend/uploaded_videos), webcams 

(list_cameras/find_camo_camera), YouTube (yt_dlp to direct stream URL). 

5. Reporting and Evaluation 

- make_report_text() and make_report_csv(): save TXT/CSV under backend/reports, 

mounted at /reports. 

- MOT-style lines written to EvalTrack/tracker_results.txt for later evaluation. 

6. Performance and Environment 

- Knobs: INFER_SIZE, JPEG_QUALITY, SEND_EVERY, MAX_DET; 

torch.backends.cudnn.benchmark = True. 

- NumPy compatibility guard (1.26.x); CUDA used if available with CPU fallback. 

These models form the foundation of the system, supporting extensibility for multiple 

detection algorithms and counting strategies. 

3.3.5 Summary table: Core Domain Models and Runtime Components 

Table 3.4: Core Domain Models and Runtime Components summary. 

Component Type Responsibilities Key methods/APIs Core data/state 

VehicleCoun

ter 

Domain Track per‑ID motion, 

decide counting axis, 

count by direction, 

aggregate 

speeds/ESAL inputs 

update; 

get_total_counts; 

reset_directional_m

etrics; 

get_dominant_axis 

vehicle_counts; 

up/down/left/right 

splits; 

counted_speeds_*; 

speeds; 

last_counting_axis; 

previous_positions/tim

es 

ESAL 

calculator 

Domain/utility Compute ESAL totals 

by class and by 

direction 

calculate_esal VDF weights; 

esal_by_class; 
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esal_by_direction; 

totals 

Speed 

averaging 

Domain/utility Robust average 

speeds overall and per 

direction 

calculate_direction_

speeds; 

calculate_average_s

peed 

counted_speeds_*; 

speeds; window, 

max_kmh 

Counting 

config 

Domain/config Select axis and line 

position (auto or 

override) 

GET/POST 

/get_counting_line, 

/set_counting_line 

counting_config: axis, 

pos_frac 

FastAPI 

service 

Runtime Serve UI, REST, and 

WebSocket 

FastAPI app; 

routes: /, /upload, 

/cameras, 

/export_csv 

reports_dir; 

uploaded_video_path; 

last_session_start/finis

h 

WebSocket 

control loop 

Runtime Handle 

start/stop/youtube/ca

mera actions; push 

frames/metrics 

/ws/detect; 

websocket_endpoin

t 

processing_task; 

stop_event 

Video 

processing 

loop 

Runtime Read frames, run 

YOLO+BYTETrack, 

update counts, draw 
overlays, stream 

JPEG 

process_video_strea

m 

INFER_SIZE, 

JPEG_QUALITY, 

SEND_EVERY, 
MAX_DET; 

counting_line_pos; fps; 

payloads 

Detection+T

racking 

Runtime (ML) Class‑filter detections, 

tracking IDs, 

per‑frame MOT 

export 

model.track(..., 

tracker="bytetrack.

yaml", 

classes=[2,3,5,7]) 

model/device (FP16 on 

CUDA); MOT result 

file 

FrameReade

r 

Runtime/helper Non‑blocking frame 

ingestion (optional 

pattern) 

start; get; release background thread; 

queue; cap 

Rendering/E

ncoding 

Runtime/helper Draw 

boxes/labels/line/arro

w; JPEG encode 

draw_detections_on

_frame; 

cv2.imencode 

CLASS_COLORS; 

counting line overlay 

Reporting/E

xport 

Runtime/helper Generate TXT and 

CSV reports 

make_report_text; 

make_report_csv; 

GET /export_csv 

files under /reports; 

report_url 

3.4 System Implementation 

3.4.1 Technologies and Tools 

The implementation of the system employed a carefully selected set of technologies and 

tools, based on the criteria of maturity, performance, community support and adequacy to the 

established architectural requirements. The selection followed the guidelines of («A 

Comprehensive Guide to AI Tech Stack», 2025) for choosing a technological stack in 

computer vision projects. 
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Table 3.5: Technologies and tools. 

Layer Technology/

Tool 

Version Justification Role in 

Architecture 

Presentation FastAPI 0.104+ Superior performance, native 

WebSocket and async/await support 

Framework 

Web and API 

WebSocket Padrão Real-time two-way communication for 

video and data transmission. 

Real-time 

protocol 

HTML5, 

CSS3, 

JavaScript 

ES6+ Responsive Interface web and cross-

platform 

Frontend 

interface 

Application Python 3.10+ Broad support for computer vision and 

ML, clear syntax, vast library 

ecosystem. 

Main 

Language 

asyncio 3.10+ For concurrency and non-blocking I/O 

operations. 

Asynchronous 

Processing 

Pydantic 2.0+ Data validation with Python types DTOs and 

validation 

Domain Pytorch 2.1+ ML framework with GPU support and 

widespread adoption in detection 

models. 

Machine 

learning 

Ultralytics 8.0+ YOLO implementation, simplified 

APIs 

Object 

detection 

Bytrack   Robust multi-object tracking algorithm 

to occlusions and low FPS. 

Multi-object 

Tracking 

Infrastructure 
 

OpenCV 4.8+ Optimized image/video processing Computer 
Vision 

NumPy 1.26+ Efficient numerical computation Manipulating 

arrays 

CUDA 11.8+ NVIDIA GPU Acceleration Hardware 

acceleration 

yt-dlp 2023+ Extracting YouTube streams External video 

sources 

 

FastAPI was chosen for its high performance, automatic OpenAPI documentation, native 

dependency injection, and active community. PyTorch was selected over TensorFlow for its 

intuitive interface, better debugging, strong research ecosystem, rapid prototyping 

capabilities, and compatibility with Ultralytics YOLO. 

Critical performance settings: 

TORCH_BACKENDS = {  
    'cudnn.benchmark': True,      # Optimizes convolutions for fixed sizes  
    'cudnn.deterministic': False, # Allows for non-deterministic 
optimizations  
    'matmul.allow_tf32': True,    # Mixed Accuracy for Operations  
}  

 
INFERENCE_CONFIG = {  
    'imgsz': 640,                 # Precision-speed balancing  
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    'fp16': True,                 # Mixed Precision for Modern GPU  
    'max_det': 100,               # Limit detections per frame  
    'conf': 0.45,                 # Optimized Confidence Threshold  
} 

Moreover, dependency and environment management rely on Poetry for streamlined 

dependency handling and virtual environments, Git for version control using Conventional 

Commits, and pre-commit hooks for automatic code validation. 

3.4.2 Applied Design Patterns 

The implementation of the system incorporated several design patterns (Gamma et al., 

1994) to ensure modular, extensible, and easy-to-maintain code. The standards applied are 

detailed below: 

1. Adapter Pattern - Integration with external models: 

class IVehicleDetector(ABC): 
    @abstractmethod  
    def detect(self, frame: np.ndarray) -> List[VehicleDetection]:  
        pass  
 
class YOLOVehicleDetector(IVehicleDetector):  
    def __init__(self, model_path: str, config: ModelConfig):  
        self.model = YOLO(model_path)  # Adapts YOLO  interface   
        self.config = config  
          
    def detect(self, frame: np.ndarray) -> List[VehicleDetection]:  
        # Tailors YOLO results for domain  
        results = self.model.predict(frame, **self.config)  
        return self._parse_detections(results) 
 

2. Strategy Pattern - Interchangeable algorithms: 

class ICountingStrategy(ABC):  
    @abstractmethod  
    def count_vehicles(self, detections: List[VehicleDetection],   
                      line_position: float) -> CountingResult:  
        pass  
 
class LineCrossingStrategy(ICountingStrategy):  
    def count_vehicles(self, detections: List[VehicleDetection],  
                      line_position: float) -> CountingResult:  
        # Specific implementation of line crossing 
        pass  
  
class AreaBasedStrategy(ICountingStrategy):  
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    def count_vehicles(self, detections: List[VehicleDetection],  
                      area: Polygon) -> CountingResult:  
        # Alternative Area-Based Counting Implementation 
        pass 

 

3. Factory Pattern - Flexible object creation: 

class DetectorFactory:  
    @staticmethod  
    def create_detector(detector_type: str, config: DetectorConfig) -> 
IVehicleDetector:  
        if detector_type == "yolo":  
            return YOLOVehicleDetector(config.model_path, config)  
        elif detector_type == "efficientdet":  
            return EfficientDetDetector(config)  
        else:  
            raise ValueError(f"Unsupported detector: {detector_type}")  
 
class VehicleDetectionFactory:  
    @staticmethod  
    def from_yolo_result(box, track_id, class_name, frame_id: int) -> 
VehicleDetection:  
        return VehicleDetection(  
            detection_id=uuid.uuid4(),  
            track_id=int(track_id),  
            vehicle_class=VehicleClass(class_name),  
            bounding_box=BoundingBox(*box.xyxy[0].tolist()),  
            confidence=float(box.conf),  
            timestamp=datetime.now(),  
            frame_id=frame_id  
        ) 

 

Applied Behavioral Patterns: 

4. Observer Pattern - Real-time notifications: 

class TrackingSubject:  
    def __init__(self):  
        self._observers: List[TrackingObserver] = []  
 
    def attach(self, observer: TrackingObserver):  
        self._observers.append(observer)  
 
    def notify_vehicle_crossed(self, event: VehicleCrossedEvent):  
        for observer in self._observers:  
            observer.on_vehicle_crossed(event)  
  
class WebSocketObserver(TrackingObserver):  
    def __init__(self, websocket: WebSocket):  
        self.websocket = websocket  



AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management 

 

41 

 

 
    async def on_vehicle_crossed(self, event: VehicleCrossedEvent):  
        await self.websocket.send_json({  
            "type": "vehicle_crossed",  
            "vehicle": event.vehicle.to_dict(),  
            "timestamp": event.timestamp.isoformat()  
        }) 

 

5. Template Method Pattern - Processing pipeline: 

class VideoProcessingPipeline(ABC):  
    def process_frame(self, frame: np.ndarray) -> ProcessingResult:  
        # Fixed skeleton, variable steps  
        preprocessed = self.preprocess(frame)  
        detections = self.detect_vehicles(preprocessed)  
        tracked = self.track_vehicles(detections)  
        result = self.analyze_results(tracked)  
        return result  
 
    @abstractmethod  
    def preprocess(self, frame: np.ndarray) -> np.ndarray:  
        pass  
 
    @abstractmethod  
    def detect_vehicles(self, frame: np.ndarray) -> List[VehicleDetection]: 
        pass 

 

Additional Creational Standards: 

Builder Pattern - Complex session construction: 

class CountingSessionBuilder:  
    def __init__(self):  
        self.session = CountingSession()  
 
    def with_video_source(self, source: VideoSource):  
        self.session.video_source = source  
        return self  
 
    def with_counting_line(self, position: float):  
        self.session.counting_line = CountingLine(position)  
        return self  

 
    def with_strategy(self, strategy: ICountingStrategy):  
        self.session.counting_strategy = strategy  
        return self  
 
    def build(self) -> CountingSession:  
        self.session.validate()  
        return self.session 
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3.5. Core Algorithms 

The computer vision pipeline implements state-of-the-art algorithms optimized for the 

vehicle tracking domain, following the approaches established in recent surveys (Zhu et al., 

2024). The processing pipeline consists of the following steps: 

 
Figure 3.4: Computer vision pipeline for the system. 

3.5.1 Vehicle Detection with YOLO 

YOLO (You Only Look Once) is an object detection architecture that performs real time 

detection. The YOLOv11n (nano version) was chosen because it offers a balance between 

speed and accuracy, essential for real-time applications. Detection is performed on each 

frame, producing bounding boxes and confidence scores (Neha et al., 2024; Zhao et al., 

2024). 

Technical Architecture: 

YOLO_CONFIG = {  

    'backbone': 'CSPDarknet',     # Efficient feature extraction  

    'neck': 'PAN-FPN',            # Feature Pyramid Networks  

    'head': 'Anchor-free',        # Reduced complexity  

    'activation': 'SiLU',         # Modern nonlinearity  

    'normalization': 'BatchNorm', # Training Stability  

}  

 

# Specific optimizations implemented:  

class OptimizedYOLOProcessor:  

    def __init__(self):  

        self.model = self._load_optimized_model()  

 

    def _load_optimized_model(self):  

        model = YOLO('yolo11n.pt')  

        if torch.cuda.is_available():  

            model = model.half()  # FP16 for speed  

            model = model.fuse()  # Fusion layers for efficiency  

        return model 
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3.5.2 Multi-Object Tracking with BYTETrack 

BYTETrack (Zhang et al., 2022) is a multi-object tracking algorithm that associates 

detections between frames using a strategy of associating high-confidence detections first 

and then low-confidence detections, reducing identity switches. The tracker uses the 

bounding boxes and scores provided by YOLO and associates them based on spatial 

similarity (using IoU - Intersection over Union) and the motion predicted by a Kalman filter. 

The output is a list of vehicles with consistent unique IDs throughout the video. 

Association Algorithm: 

class BYTETracker:  
 
    def track(self, detections: List[VehicleDetection]) -> 
List[VehicleDetection]:  
        # Separates detections by trust  
        high_conf_dets = [d for d in detections if d.confidence > 0.5]  
        low_conf_dets = [d for d in detections if 0.1 < d.confidence <= 0.5]  
        # First association: high trust  
        tracks_updated = self._associate(high_conf_dets, self.active_tracks)  
 
        # Second association: low confidence with non-associated tracks  
        remaining_tracks = [t for t in self.active_tracks if t not in 
tracks_updated]  
        tracks_updated += self._associate(low_conf_dets, remaining_tracks)  
 
        # Booting new tracks 
        new_tracks = self._init_new_tracks(high_conf_dets) 
        return tracks_updated + new_tracks 

     
    def _associate(self, detections, tracks) -> List[VehicleTracking]: 
        # Uses IoU and motion predicted by Kalman Filter 
        cost_matrix = self._compute_iou_cost(detections, tracks)  
        matches, unmatched = self._linear_assignment(cost_matrix)  
        return self._update_matched_tracks(matches, detections, tracks) 

Kalman Filter for Motion Prediction: 

class VehicleKalmanFilter:  

    def __init__(self):  

        # State: [x, y, w, h, vx, vy, vw, vh]  

        self.kf = cv2.KalmanFilter(8, 4)  

        self._setup_transition_matrix()  

 

    def predict(self, track: VehicleTracking) -> np.ndarray:  
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        self.kf.predict()  

        return self.kf.statePost  

 

    def update(self, detection: VehicleDetection):  

        # Measurement: [x, y, w, h]  

        measurement = np.array([  

            detection.bounding_box.center[0],  

            detection.bounding_box.center[1],  

            detection.bounding_box.width,  

            detection.bounding_box.height  

        ], dtype=np.float32)  

        self.kf.correct(measurement) 

3.5.3 Virtual Line Counting Algorithm and Speed Average Calculation 

The count is performed by means of a virtual line positioned at a fixed x/y-coordinate in 

the frame (K% of the height/width of the frame). For each vehicle tracked, the central position 

of the bounding box is calculated, and the virtual line has been crossed by comparing the 

current position with the previous one. For instance, in case of vertical circulation, the 

crossing is recorded when the vehicle's previous position is above the line and the current 

one below (or vice versa, depending on the direction set). 

Virtual Line Counting Algorithm: 

class LineCrossingAlgorithm:  
    def __init__(self, line_y: float, direction: str = "downward"):  
        self.line_y = line_y  
        self.direction = direction  
        self.counted_ids = set()  
        self.track_history = {}  # {track_id: [y_positions]}  
    def check_crossing(self, detection: VehicleDetection) -> bool:  
        track_id = detection.track_id  
        current_y = detection.bounding_box.center[1]  
        if track_id not in self.track_history:  
            self.track_history[track_id] = []  

        # Maintains limited history  
        self.track_history[track_id].append(current_y)  
        if len(self.track_history[track_id]) > 5:  
            self.track_history[track_id].pop(0)  

        # Checks for direction-based crossing  
        if self.direction == "downward":  
            return self._check_downward_crossing(track_id, current_y)  
        else:  
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            return self._check_upward_crossing(track_id, current_y) 

    def _check_downward_crossing(self, track_id: int, current_y: float) -> 
bool:  
        if track_id in self.counted_ids:  
            return False  

        history = self.track_history[track_id]  
        if len(history) < 2:  
            return False  

        # Crossing: Was up, now it's down the line 
        previous_y = history[-2] 
        return previous_y <= self.line_y < current_y 

      

Average speed calculation: 

def calculate_average_speed(counter): 
    """Calculate overall and direction-specific average speeds based on 
counting axis.""" 
    # Define stopped threshold 
    STOPPED_THRESHOLD = 1.0  # km/h 

    # Calculate speeds based on counting axis 
    axis = getattr(counter, 'last_counting_axis', None) or 
counting_config.get("axis") or 'y' 
    if axis == "y": 
        # For horizontal line, only calculate up/down speeds (counted-at-
crossing only) 
        speed_up = calculate_direction_speeds(counter.counted_speeds_up, 
STOPPED_THRESHOLD) 
        speed_down = calculate_direction_speeds(counter.counted_speeds_down, 
STOPPED_THRESHOLD) 
        relevant_speeds = {'up': speed_up, 'down': speed_down} 
    else: 
        # For vertical line, only calculate left/right speeds (counted-at-
crossing only) 
        speed_left = calculate_direction_speeds(counter.counted_speeds_left, 
STOPPED_THRESHOLD) 
        speed_right = 
calculate_direction_speeds(counter.counted_speeds_right, STOPPED_THRESHOLD) 
        relevant_speeds = {'left': speed_left, 'right': speed_right} 

    # For overall average, use all counted-at-crossing speeds (fallback to 
all speeds if none yet) 
    all_counted = counter.counted_speeds_all if hasattr(counter, 
'counted_speeds_all') else [] 
    if not all_counted: 
        overall_avg = calculate_direction_speeds(counter.speeds, 
STOPPED_THRESHOLD) 
    else: 
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        overall_avg = calculate_direction_speeds(all_counted, 
STOPPED_THRESHOLD) 
    relevant_speeds['overall'] = overall_avg 

    return relevant_speeds 

3.5.4 ESAL Calculation for Predictive Maintenance 

Vehicle Damage Factors (VDFs), assumed from AASHTO 1993 table values, are applied 

as follows: car (0.0005), motorcycle (0.0001), bus (0.15), and truck (2.0). Per-class 

Equivalent Single Axle Loads (ESALs) are computed as ESAL_class = count_class × 

VDF_class, with total ESAL being the sum across all classes. Directional ESALs are 

calculated similarly using traffic splits (up/down or left/right) to attribute loads by movement 

direction. The backend aggregates ESALs by class, direction, and total, then exports CSV 

and human-readable text reports including timestamps and session metadata. 

ESAL calculation: 

def calculate_esal(counts, split_counts=None): 
    VDF = { 
        "car": 0.0005, 
        "motorcycle": 0.0001, 
        "bus": 0.15, 
        "truck": 2.0 
    } 
    esal_by_class = {cls: float(counts.get(cls, 0)) * VDF.get(cls, 0.0) for 
cls in VDF} 
    esal_total = float(sum(esal_by_class.values())) 
     
    # If split counts provided (e.g. up/down or left/right), calculate those 
too 
    if split_counts: 
        esal_by_direction = {} 
        for direction, dir_counts in split_counts.items(): 
            dir_esal = {} 
            dir_total = 0.0 
            for cls in VDF: 
                val = float(dir_counts.get(cls, 0)) * VDF.get(cls, 0.0) 
                dir_esal[cls] = val 
                dir_total += val 
            esal_by_direction[direction] = { 
                "by_class": dir_esal, 
                "total": dir_total 
            } 
        return esal_by_class, esal_total, esal_by_direction 
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    return esal_by_class, esal_total 

In summary, BYTETrack is implemented via Ultralytics tracking APIs (enabled by the 

included bytetrack.yaml in the repository), while speed estimates are approximate and 

intended solely for comparative directional averages, not legal metrology. 
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4. Chapter 4: Experimental Setup 

4.1 Dataset Selection and Preparation 

Table 4.1 illustrates the most common relatable dataset for vehicle detection in urban 

scenarios, compared for training the model. 

Table 4.1: Datasets comparison. 

Dataset Resolution Annotations Focus Area Limitation 

Cityscapes 2048×1024 Pixel-wise, 

object detection 

Urban traffic Limited to 

European cities 

KITTI 1242×375 3D bounding 

boxes, object 

detection 

Autonomous 

driving 

Small dataset 

size 

COCO Varies Bounding boxes, 

segmentation 

General object 

detection 

Not specific to 

traffic scenes 

Waymo 

Open 

1920×1080 3D LiDAR, 

bounding boxes 

Self-driving cars Requires LiDAR 

processing 

Berkeley 

Deep Drive 

(BDD100K) 

1280×720 Object detection, 

segmentation 

Diverse driving 

scenarios 

No pixel-wise 

segmentation 

 

In short, the KITTI dataset is more used for autonomous driving, and it has a smaller 

dataset size. As for COCO, it is a general object detection dataset and not specialized in traffic 

scenes. The Waymo Open Dataset is considered beyond the scope of this research. The 

simplicity in managing the Cityscape dataset with its 5,000 high-resolution images and 

detailed labelling, specific for autonomous driving, made it a strong candidate. However, 

Berkeley Deep Drive has more diversity of scenarios and is five times bigger than Cityscape, 

containing 100,000 high-quality images for vehicle classes. So, Berkeley Deep was the 

choice. Also, considering that for real-time vehicle detection accuracy, the higher the image 

resolution, the better for high quality training. 

BDD100K is the largest and most diverse open driving video dataset, containing 100,000 

high-resolution video clips (over 1,100 hours) collected from more than 50,000 rides across 

various U.S. regions, weather conditions, times of day, and scene types (city, highway, 

residential). Released by UC Berkeley BAIR, it includes rich annotations on keyframes—
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object bounding boxes, drivable areas, lane markings, and instance segmentation—making 

it the standard benchmark for multitask perception and autonomous driving research. 

Furthermore, BDD100 has the group of classes that are critical for this work: cars, trucks, 

buses, motorcycles, and bicycles (Table 4.2). In addition, the focus of this dataset is real-

world traffic representation, which makes it superior to other datasets considering the 

mentioned objectives of this work.  

 

Figure 4.1: Statistics of different types of objects (from BDD100K site). 

Statistics of different types of objects. 

Figure xx illustrates a balanced class of vehicles in terms of instances. Moreover, this dataset 

is accessible for research purposes and has no license restrictions; it is open source.  

4.2 Model Training (YOLO) 

4.2.1 Environment Setup (Hardware/Software) 

Experimental Environment 

Hardware Specifications 

The implementation was conducted on a desktop computer equipped with an Intel(R) Core 

(TM) i5-8400 CPU, with 16GB of RAM and graphical interface card of NVIDIA (GeForce 

GTX 1070 GPU) with 16GB VRAM. The system utilized a 1TB SSD for storage, ensuring 

fast data access during training, as we can see in Table 4.3. 

 



AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management 

 

50 

 

Table 4.2: Hardware speficifications. 

CPU GPU RAM Storage 

Intel(R) Core 

(TM) i5-8400 CPU 

@ 2.80GHz   2.81 

GHz 

NVIDIA 

GeForce GTX 

1070 8GB VRAM 

8.0 

GB 
1TB SSD 

 

Software Specifications 

Regarding the software environment, it was the operative system of Windows 11 pro, 

Visual Studio Code, Python 3.11 as the programming language. The deep learning framework 

used was Ultralytics YOLOv11m from the official site, with CUDA 12.1 and cuDNN 8.5.0 

for GPU acceleration. Key libraries such as NumPy (1.23.5), OpenCV (4.7.0), and Pandas 

(1.5.3) were used for data processing and visualization. Table 4.4 shows in resume: 

Table 4.3: Software specification. 

OS 
Python 

environment 

Python 

version 

Support 

on 

programming 

DL 

Framework 

Key 

Libraries 

CUDA 

and cuDNN 

Windows 

11 Pro 
Pytorch 

Python 

3.11 

Visual 

Studio code 

Ultralytics 

YOLOv11n 

NumPy, 

OpenCV, 

Pandas 

CUDA 

12.1 

cuDNN 

8.5.0 

Virtual Environment 

For the preservation of the project files and to avoid conflicts and misleading on file 

reading and dependencies, an isolated virtual environment was created, using pip in the 

terminal prompt of VS Code to manage dependencies. The necessaries libraries were 

installed such as NumPy, Pandas, OpenCV, Pytorch. Others required packages were installed 

via “pip”, ensuring consistency across different systems. 

Visual Studio Code 

The easy integration capability of VS Code for Python language with its Python extension, 

helps on identifying errors and efficiently fix them with IntelliSense suggestions. VS Code 

makes it easy to create and manage the project files. Furthermore, it is simple to implement 

changes and reverse them by simply turning code into comments, which helps on controlling 

the different versions and approaches used in the code. 
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VS Code was used to create and apply changes to the train.py file, the dataset.yaml file, 

and to convert the annotation from “json” to “txt” format using a python customized.  

Moreover, the built-in terminal also allowed me to run scripts to reorganize the dataset 

folder on the easy way to process, without leaving the IDE.  

4.2.2 Training Configuration and Hyperparameters 

To train the model, the relevant libraries were imported, and the desired pretrained model 

was loaded (previously downloaded from ultralytics site), as we can see in the code below. 

Training code: 

import yaml 
import multiprocessing 
from ultralytics import YOLO 

 
def main(): 
    with open('dataset.yaml', 'r') as f: 
        data = yaml.safe_load(f) 
    model = YOLO('yolo11n.pt')   
    """ 
        results = model.train( 
        data='dataset.yaml',  # Path to dataset config 
        epochs=50,            
        imgsz=640,             
        batch=8, 
        device=0, 
        pretrained=True, 
        optimizer='AdamW', 
        lr0=0.01, 
        patience=25, 
        save_period=10, 
        project='mixed_COCO_BDD100k', 
        name='exp1' 
    ) 
    """ 

     
    try: 
        metrics = model.val() 
    except Exception: 
        metrics = None 
       print('Training completed. Best model saved in 
runs/detect/train/weights/best.pt') 

 
if __name__ == '__main__': 
    try: 
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        multiprocessing.freeze_support() 
    except Exception: 
        pass 
    main() 

 

Dataset configuration: 
 names: 

... 
- car 
- truck 
- bus 
- train 
- motorcycle 
- bicycle 

... 
nc: 80 
path: G:\Users\guima\Downloads\Coco  # dataset root dir 

train: mix_COCO_CSCAPE_BDD100/images  # train images (53,518 images) 

val: COCO_vehicles_val/images 

 

 

4.3 Prototype Application Development 

The architectural components defined in Chapter 3 were integrated into a functioning real-

time application. The validated YOLO model was deployed within the FastAPI backend, 

connecting the vision pipeline (Figure 3.4) to the frontend interface. The system was then 

tested using the following scenario to validate the end-to-end workflow illustrated in Figure 

4.1. 

Video 

Source 
→ 

YOLO 

Detection 
→ BYTETracker → 

Vehicle 

Counter 
→ WebSocket → UI 

↓  ↓  ↓  ↓  ↓  ↓ 
File/ 

Stream 
 Detections  Tracking  Count  Transmission  Webpage 

Figure 4.2: How it works. 

4.3.1 Backend (FastAPI) and Frontend (Streamlit) Setup) 

To test the proposed real-time vehicle detection, tracking and counting system, a prototype 

python application was created. From Visual Studio Code, it was created a backend code and 

frontend code, which was hosted on a local virtual server and accessible over the local 

network using Unicorn for FastAPI as the backend server for hosting the application locally 
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and make it accessible over the local LAN network, and Streamlit as the frontend to build 

interactive data for user interface (Table 4.5). 

Table 4.4: Prototype essential tools. 

Tool Purpose Command 

Uvicorn + FastAPI API backend or web services (fast) uvicorn app:app ... 

Streamlit 
Interactive dashboards/UI for data 

apps 
streamlit run webapp.py 

4.3.2 Testing Scenario 

As presented in Figure 4.3, it used a camera as the source of video streaming from the 

street road, the video is sent to the server(desktop), the application runs on a webpage in the 

same device. In this scenario, outputs such as bounding boxes, class labels, and tracking 

identifiers are rendered via the web interface, thereby providing an end-to-end validation of 

the integrated detection and tracking pipeline. The counting is presented in real time in the 

Detection report, at the end it is summarized in a final report at the left part of the page. 

 
Camera 

 
 

Desktop with GPU used as 

server and user device 
Figure 4.3: System setup. 

This setup which is cost-effective, was deployed without dedicated hardware, while 

maintaining real-time processing compatibility with Ultralytics and FastAPIs, the interface 

is presented in figure 4.4.  
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Figure 4.4: User interface 

4.4 Evaluation Methodology 

4.4.1 Performance Metrics 

Real-time object detection and tracking systems must balance speed, accuracy, and 

efficiency. Below are the key metrics, according (A. Wang et al., 2024b):   

1. Speed (Ensuring real-time responsiveness)   

- FPS (Frames Per Second): Measures how many frames the system processes per 

second. ≥30 FPS (≈33ms/frame) is needed for smooth real-time performance.   

- End-to-End Latency: Total processing time per frame (including detection & 

tracking). Must stay <33ms to match 30 FPS.   

2. Accuracy (Ensuring correct detections & tracking)   

- mAP@0.5 (Mean Average Precision at IoU=0.5): Evaluates detection accuracy by 

checking if predicted boxes match ground truth (IoU ≥ 0.5). Higher mAP = better 

detection.   
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- MOTA (Multiple Object Tracking Accuracy): Measures tracking performance by 

penalizing false positives, missed detections, and ID switches. >50% is considered 

acceptable.   

3. Efficiency (Optimizing resource usage)   

- Hardware Utilization (GPU/CPU Usage): Should stay <80% to prevent overheating 

and allow multitasking.   

- Power Consumption (Watts per Inference): Critical for battery-powered devices 

(e.g., drones, edge AI). Lower watts = longer runtime.   

Supporting Metrics 

- IoU (Intersection over Union): Measures overlap between predicted and ground-

truth boxes. IoU ≥ 0.5 is a common threshold.   

- Precision: % of detected objects that are correct (low false positives).   

- Recall: % of actual objects detected (low misses).   

These metrics ensure real-time systems are fast, reliable, and efficient in real-world 

applications. 

4.4.2 Experimental Protocol 

The experimental evaluation follows a structured protocol designed to ensure 

reproducibility, comprehensive assessment, and practical relevance to urban planning 

applications. 

Evaluation Datasets and Scenarios 

Primary Dataset: COCO + BDD100k 

- ~50,000 high-quality urban scene images with fine annotations 

- Focus on urban environments across varying conditions 

- Vehicle classes: car, truck, bus, motorcycle, bicycle. 

Experimental Procedure 
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Phase 1: Quantitative Model Evaluation 

1. Detection Performance Assessment 

a. Evaluate trained YOLO model on validation set 

b. Calculate mAP, precision, recall across all vehicle classes 

c. Generate precision-recall curves and confusion matrices 

2. Tracking Performance Validation 

a. Process video sequences through complete detection-tracking pipeline 

b. Compute MOTA, IDF1, and HOTA metrics 

c. Analyse identity preservation across frames 

3. Computational Performance Benchmarking 

a. Measure FPS on target hardware (NVIDIA GTX 1070) 

b. Monitor GPU/CPU utilization during continuous operation 

c. Assess memory consumption and thermal characteristics 

Phase 2: Qualitative System Evaluation 

1. Visual Inspection 

a. Manual review of detection and tracking results 

b. Identification of failure cases and edge conditions 

c. Assessment of bounding box stability and consistency 

2. Use Case Validation 

a. Vehicle counting accuracy in simulated traffic scenarios 

b. ESAL calculation reliability compared to manual counts 

c. Integration testing with web interface prototype 

Success Criteria 

Based on the system requirements established in Section 3.2, the following success 

thresholds are defined: 

Table 4.5: Success criteria 

Metric Category Minimum 

Acceptance 

Target Performance Excellence 

Threshold 

Detection Accuracy mAP@50 ≥ 0.50 mAP@50 ≥ 0.65 mAP@50 ≥ 0.75 
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Tracking 

Performance 

MOTA ≥ 0.50 MOTA ≥ 0.65 MOTA ≥ 0.75 

Computational 

Performance 

FPS ≥ 10 FPS ≥ 15 FPS ≥ 25 

Counting Accuracy ≥ 85% ≥ 92% ≥ 95% 

This comprehensive evaluation methodology ensures rigorous assessment of the 

proposed system's capabilities while maintaining practical relevance to real-world urban 

planning applications. The multi-faceted approach addresses both technical performance and 

operational requirements, providing a solid foundation for validating the research hypotheses 

and system objectives. 
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5. Results and Discussion 

In this chapter, it will be discussed and analysed the results of the YOLO11n fine-tuning 

on a mixed COCO + BDD100k dataset. The key performance metrics observed include loss 

values on training and validation, mean Average Precision (mAP), precision, and recall, to 

assess the effectiveness of the model. 

5.1 Model Training Performance (Loss Curves) 

The model was trained for 50 epochs with smooth convergence, as shown in Figure 5.1. 

Training and validation losses (box) exhibited a rapid initial decline within the first 10 

epochs, followed by a steady and gradual decline from epoch 10 to 50; train box loss started 

at approximately 1.52 and ended around 1.26, while val box loss started near 1.35 and ended 

around 1.11, indicating a consistent reduction in bounding-box regression error and improved 

localization accuracy. 

Classification loss for both training and validation showed a sharp drop in the first ~10 

epochs, followed by a continued steady decrease through the remaining epochs; train cls loss 

began at ~1.30 and ended near 0.93, whereas val cls loss started at ~1.50 and reached ~1.05 

by the final epoch, reflecting strong and ongoing improvement in the model’s ability to 

correctly classify vehicles. 

Train and validation Distribution Focal Loss decreased smoothly and almost linearly 

throughout training, both starting at approximately 1.175–1.18; train DFL ended around 1.04 

and val DFL ended near 1.10. The minimal gap between training and validation DFL (and all 
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other losses) confirms excellent generalization with no signs of overfitting, demonstrating 

stable and healthy convergence. 

 

Figure 5.1: Loss curve evaluation graphics and precision evaluation graphics. 

Overall, the curves indicate a well-behaved training process with strong final metrics 

(precision ≈ 0.78, recall ≈ 0.63, mAP@50 ≈ 0.70, mAP@50:95 ≈ 0.55), typical of a robust 

vehicle-detection model on real-world data. 

5.2 Detection and Tracking Performance Metrics 

Detection Performance  

In figure 5.1, detection performance continued to grow efficiently from the start to the last 

epoch (the four graphics on the right), achieving a precision and a recall of above 0.78 and 

0.61, respectively. A considerable gain is observed in mAP@50, growing from 0.35 to reach 

a peak of around 0.60 at epoch 50. In parallel, mAP@50:95 reached its peak of 0. 51 at the 

last epoch, a healthy improvement of the model precision. 

Tracking Performance  

Tracking evaluation using BYTETrack yielded a MOTA of 0.6753, reflecting robust 

multi-object tracking performance. Full MOT metrics show IDF1 = 83.1%, IDP = 82.2%, 

IDR = 84.0%, Recall = 84.9%, and Precision = 83.0%, with 25 mostly tracked (MT) and 11 
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partially tracked (PT) out of 37 ground truth trajectories. Low identity switches (IDs = 3) and 

fragmentations (FM = 76) confirm strong association stability, while MOTP = 0.222 indicates 

good localization accuracy. 

 

Figure 5.2: ByteTrack performance evaluation. 

Overall, the curves on fig 5.1 indicate a well-behaved training process with strong final 

metrics, typical of a robust vehicle-detection model on a real-world data. And, ByteTrack 

shows exceptional ID preservation and a high percentage of trajectories tracked. These results 

validate effective integration of Ultralytics detection with BYTETrack for reliable vehicle 

tracking across frames. 

5.3 Qualitative analysis of the model 

The results of comparing the pretrained model and the mixed dataset model show a notable 

class improvement and stability. Both models were validated on the COCO validation set 
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with vehicles' classes and compared in the table below; the last column shows the 

improvements. 

Table 5.1:Metrics comparison Yolo1n.pt and the mixed model dataset, 

Metric Pretrained YOLO11n Mixed 50ep Improvement 

mAP@0.5 0.6453 0.7053 +9.31% ↑ 

mAP@0.5:0.95 0.4595 0.5131 +11.68% ↑ 

Precision 0.7351 0.7800 +6.11% ↑ 

Recall 0.5700 0.6122 +7.41% 

 

Below are some random images from the streets of Vila Nova de Gaia for comparison 

purposes. On the first image (Figure 5.3) we can see that the Yolo11n.pt detects 7 vehicles 

when there are 4, exactly how the mixed dataset model presents. It is also visible the struggles 

of Yolo11n.pt when small obstruction is present (see the left side of both images on figure 

5.3), however the mixed model behaves consistently. In figure 5.4 and 5.5, the mixed model 

is slightly more confident than the Yolo11n.pt. 

 

Figure 5.3:Santo Ovidio's metro station (a). 

mailto:mAP@0.5
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Figure 5.4: Santo Ovidio's metro station (b). 

 
Figure 5.5: Vila Nova de Gaia, Canelas, A29. 

The mixed dataset model is more conservative and more optimized for precision over 

recall, with strong qualitative performance: higher confidence, better calibration, and 

strategic detection filtering. Ideal for applications where false positives are costly 

(autonomous driving, traffic monitoring).   

5.4 Important Fine-tune considerations 

The results of this training were considerably positive, considering that the YOLO weights 

are pretrained on the COCO dataset, with more than 80 classes and around 110 000 instances, 

compared to the mixed dataset containing 28,518 COCO + 25,000 BDD100k, ~200,000+ 

vehicle annotations across 8 vehicle classes. Moreover, only few classes were used in 

training, and 0.7053 of mAP50 and 0.5131 mAP50-90 is sound for YOLO11n. 
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These results demonstrate the effectiveness of the knowledge transfer process, where the 

YOLO11n model, previously trained on the COCO dataset with multiple classes, was able to 

competently specialize in vehicle detection in the urban context of BDD100K dataset, 

evidenced by the progressive and consistent improvement of all metrics over the 50 

finetuning epochs - with emphasis on the significant growth of ~12% in mAP50-95, and 

accuracy of 0.78, indicating that the model not only learned to identify vehicles with greater 

accuracy, but also refined its spatial location capacity in complex scenarios, thus validating 

the strategy of taking advantage of hierarchical characteristics learned in the generic domain 

for application in specific computer vision tasks. 

5.4 Prototype Application Demonstration 

The trained model was deployed in a real-time prototype using FastAPI with 

bytetrack.yaml integration. The system processed video streams at 15 to above 30 FPS on 

mid-range hardware, depending on video format and data processing, generating per-class 

ESALs using AASHTO 1993 VDF assumptions (car: 0.0005, motorcycle: 0.0001, bus: 0.15, 

truck: 2.0). Outputs included directional traffic splits, total ESAL aggregation, and 

timestamped CSV/text reports, demonstrating practical utility for traffic load monitoring. 
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Figure 5.6: Prototype webpage demonstration. 

The figure 5.7 shows the application running directly on a video from youtube, as we can 

see the address in the top part of the image, showing a consistent performance on real-time 

video. 

To assess the counting accuracy of the proposed system, a camera was installed on the 

balcony capturing the vehicles on the street (figure 5.7), a manual validation was performed 

by counting 200 vehicles in each traffic direction.  
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Figure 5.7: Prototype testing. 

The model detected 197 vehicles in one direction and 200 in the other. The counting 

accuracy was therefore calculated using the simple rule of three  
197+200

200+200
× 100  resulting in 

99.25%. This high accuracy demonstrates the model’s strong reliability in real-world 

conditions, confirming its suitability for automated traffic monitoring. 

5.5 Discussion of Limitations 

Despite strong convergence, the model exhibits sensitivity to small objects and heavy 

occlusion, reflected in the mAP@50:95 gap. Also, knowledge retention requires special 

attention for producing learning transfer correctly. Speed estimates are approximate and 

intended for comparative directional analysis only, not legal metrology. VDF values are 

assumed from AASHTO 1993 tables and may not reflect modern axle configurations. Future 

work should incorporate load spectra from weight-in-motion data and explore multi-camera 

fusion for improved 3D tracking and occlusion handling. 
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Despite these challenges, the research establishes a viable framework for future 

expansion. Subsequent work should prioritize securing funding for better and updated 

datasets and computational resources, collaborating with municipal partners for creating 

datasets with localized traffic data and specific for heavy vehicles, and leveraging distributed 

computing to improve model performance. These steps would address current gaps while 

enhancing the technology's practical utility for urban traffic management. 

6. Practical Application and Impact Analysis 

6.1 The Role of Traffic Volume in Infrastructure Degradation 

Traffic volume plays a decisive role in road deterioration, with wear patterns often 

accelerating beyond what traditional reactive maintenance can address. Heavy vehicles, 

particularly trucks and buses, impose repeated loads that cause permanent deformation, 

cracking, and subgrade damage (Ghanizadeh et al., 2025; Septiyani & Indrastuti, 2024).  

Two key metrics in traffic analysis are Average Daily Traffic (ADT) — the mean number 

of vehicles passing a point in 24 hours — and Average Annual Traffic (AAT), which is the 

daily average over a year. These metrics feed into the Equivalent Standard Axle Load (ESAL) 

calculation, which converts the combined effect of all vehicle types into the equivalent 

damage caused by a single standard axle load (Aljaleel et al., 2024).  

Recent advancements emphasize integrating traffic metrics into AI-driven Predictive 

Maintenance (PdM) frameworks, with studies showing that multi-source data fusion 

significantly enhances deterioration forecasting accuracy (Umair Hassan et al., 2023). These 

approaches are further refined by hybrid techniques that couple machine learning predictions 

with dynamic multi-objective optimization to strategically prioritize rehabilitation based on 

factors like ESAL-derived wear (Alqasi et al., 2024). This data-driven paradigm is already 

being operationalized; for instance, connected vehicle data is now leveraged to assess road 

quality at scale via the International Roughness Index (IRI), revealing clear correlations 

between high traffic volumes and increased roughness to inform targeted PdM investments 

(Llopis-Castelló et al., 2024). Complementing this, image processing and AI enable 

proactive, visual distress detection, automatically identifying and prioritizing maintenance 
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for traffic-induced cracks and potholes to achieve more sustainable infrastructure outcomes 

(Gopalakrishnan et al., 2022). 

6.2 Predictive Maintenance Framework 

Predictive maintenance systems can set alerts when remaining life falls below a threshold, 

allowing timely interventions. Real-time analytics can help urban planners to align 

maintenance with actual load patterns, turning high-traffic corridors from costly liabilities 

into efficiently managed assets. 

Industry analyses indicate that integrating AI, IoT sensor networks, and predictive-

analytics platforms is emerging as a cost-efficient strategy for road-asset management, 

particularly across European road networks where data quality, interoperability, and 

organizational change management have been identified as critical enablers of measurable 

savings (Europe (virtual) 2024: Harnessing the power of predictive maintenance in roads | 

McKinsey, 2024). IoT-enabled pavement-monitoring frameworks further demonstrate that 

real-time sensing combined with machine-learning models can reduce inspection effort and 

maintenance expenditures by improving defect detection, prioritization, and intervention 

timing (Cano-Ortiz et al., 2022; Tamagusko et al., 2024). By incorporating traffic-loading 

metrics—such as vehicle-type distributions, axle-load spectra, and E SAL factors derived 

from national datasets like Portugal’s TMDA—predictive-maintenance systems can evolve 

into resilient, cost-effective tools that mitigate the non-linear deterioration associated with 

heavy-vehicle volume and overloaded axles (Hatoum et al., 2022). 

By incorporating vehicle type distributions and axle factors into ESAL calculations from 

sources like Portugal's TMDA data, PdM can evolve into a resilient, cost-effective paradigm, 

mitigating the non-linear impacts of traffic volume on global infrastructure. 

6.3 Case Study: Traffic Context in Portugal 

The necessity for predictive, AI-driven pavement management is starkly illustrated by 

traffic data from Portugal's National Road Network (RRN), according to the Autoridade da 

Mobilidade e dos Transportes (AMT, 2023), the overall Annual Average Daily Traffic 
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(TMDA) across major roads in 2022 was 20,110 vehicles, with intense concentration in 

metropolitan areas like Lisbon, where the A5 recorded over 144,000 vehicles per day—

compared to sparse rural traffic on routes like the A4.  

Within the same, A cluster analysis report further segments the network into distinct 

demand patterns, from high-traffic urban corridors to seasonally spiking tourist routes. These 

pronounced regional and seasonal variations in volume directly amplify degradation risks, 

particularly in high-ESAL corridors, underscoring the critical need for the predictive 

maintenance strategies discussed previously. 

6.4 Integration into Smart Urban Ecosystems 

The integration of AI-powered vehicle image recognition systems into urban planning and 

transportation management offers transformative potential, enabling real-time monitoring 

and analysis of traffic patterns, vehicle density, and infrastructure conditions. These systems 

provide actionable insights for city planners and traffic authorities while addressing critical 

challenges caused by heavy traffic loads. 

6.4.1 Real-Time Traffic Monitoring and Road Degradation 

AI, with computer vision, can analyze live video feeds to: 

- Classify vehicles and count traffic volume (ADT) 

- Calculate Equivalent Single Axle Loads (ESAL) using predefined Vehicle Damage 

Factors (VDFs) 

- Predict remaining pavement life by comparing cumulative ESAL to design 

thresholds. 

These features can be used by urban planners to monitor infrastructure degradation and 

actively prevent serious road damages by performing preventive maintenance and adjusting 

traffic, accordingly, as presents the following subsections. 

6.4.2 Predictive Maintenance 

With computer vision applied to traffic management, it is possible to: 
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- Prioritize road repairs: Vehicle overloading is considered one of the most significant 

causes of accelerating flexible pavement deterioration, reducing the pavement’s 

design life, and affecting the overall sustainability of the pavement system (Hatoum 

et al., 2022; Putri et al., 2024). By identifying high-ESAL corridors, such as 

Industrial zones with frequent overloaded trucks, for targeted maintenance, AI can 

reduce costs of infrastructure repairments.  

- Dynamic road resurfacing schedules: Systems integrate real-time ESAL data to 

adjust maintenance timelines, avoiding premature failures. 

These two features can be used by urban planners to automate intervention in advance. 

6.4.3 Smart City Integration 

Vehicle detection and tracking with AI can be integrated into smart cities in: 

- Public transport optimization: Tracking buses and freight vehicles improves routing, 

while emission-aware policies use vehicle class data to reduce carbon footprints 

(Singapore, 2018). 

- Overload enforcement: Cameras flag overloaded trucks for inspection, mitigating 

damage quantified by studies such as AASHTO Guide for Design of Pavement 

Structures. 

The integration of AI-powered vehicle detection and tracking moves urban management 

from a reactive to a predictive and proactive model. As demonstrated, these systems deliver 

a dual benefit: they optimize real-time operational efficiency, while 

simultaneously safeguarding long-term public assets through precise, data-driven 

enforcement against costly wear and tear, as quantified by foundational engineering 

principles. Ultimately, this technological synergy is not merely about streamlining traffic, it 

is about building a more sustainable, resilient, and economically viable urban future." 

6.4.4 Case Studies 

The integration of AI-powered vehicle tracking is revolutionizing urban infrastructure 

management. Systems like Barcelona's Smart Parking demonstrate how guiding drivers to 

available spots directly reduces vehicle miles traveled (VMT) and congestion, a benefit 
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confirmed by recent analyses of IoT-based parking solutions (Bhatnagar et al., 2025). This 

reduction in circling traffic indirectly lowers the cumulative Equivalent Single Axle Load 

(ESAL) on pavements, mitigating long-term wear. Furthermore, the manual ESAL-based 

alert systems pioneered by jurisdictions like Sidoarjo (Indonesia) are now being superseded 

by predictive AI. Research has progressed to where artificial intelligence can automatically 

detect pavement damage and forecast deterioration in real-time, effectively automating 

infrastructure lifespan predictions (Abu Dabous et al., 2025). This synergy of dynamic 

operational data and long-term structural analytics represents the forefront of building 

sustainable and resilient urban transport networks. 

By merging real-time operational insights like traffic flow with long-term infrastructure 

analytics (ESAL-based wear models), AI systems modernize urban resilience, as seen in 

global benchmarks. These innovations, combined with seamless integration into legacy 

traffic management systems, will pave the way for more resilient, efficient, and universally 

deployable solutions, ultimately supporting smarter urban ecosystems. 

7. Conclusion and Future Work 

7.1 Synthesis of Contributions 

Resorting to Artificial intelligence to address the challenges of human life has proved to 

be very successful in response to the rapidly changing events of society, with the structural, 

demographic, and climate changes imposing volatile and uncertainty situations with a high 

degree of complexity and ambiguity. In the realm of computer vision, image recognition has 

been used to bring new solutions and approaches to enhance human life. 

In this work it was presented, the base and evolution of machine learning. Also standing 

as a study to consider as an introduction to computer vision and artificial intelligence. A very 

simplistic approach on how to apply the available models of computer vision was presented; 

from gathering the data, training the model, evaluating to implementation in simulated 

scenario. A methodology to use image recognition with artificial intelligence for improving 

urban planning and transportation through vehicle identification was proposed and developed 
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as a prototype, using the recent version of a pre-trained model of YOLO for detecting, 

tracking and counting the vehicle on the road, can give insights to help on decision making. 

Furthermore, the necessary steps to choose the technologies, to prepare the working 

environment and the requirements were presented and explained in a simple way. Also, the 

process was presented to select the adequate dataset to enhance the pretrained model 

according to the goal of this work. Moreover, the evaluation of the model and analysis of the 

results of the experiment showed that the implemented methodology for training the model 

was considerably positive and the model learned, although not achieving the peak results. 

Key Technical Contributions:  

 Implementation of a YOLOv11-based vehicle detection system achieving around 

78% precision and 63% recall; 

 Development of an integrated tracking and counting pipeline using ByteTrack 

algorithm; 

 Creation of a web-based prototype application with real-time visualization 

capabilities; 

 Application of Clean Architecture and Domain-Driven Design principles to computer 

vision systems; 

 Demonstration of ESAL-based calculation for predictive maintenance framework for 

urban infrastructure. 

7.2 Implications for Urban Planning and Traffic Management 

This study provides valuable insights into how AI-driven vehicle recognition can optimize 

traffic management and urban infrastructure. The integration of AI-powered vehicle 

recognition systems into traffic monitoring frameworks can enable real-time identification 

and classification of vehicles, leading to improved traffic flow regulation and generating 

useful data for predicting road maintenance. It can help to detect congestion patterns 

automatically, identify high-density traffic zones, and analyze peak-hour trends, which 

allows urban planners to design more effective road infrastructure, allocate resources 

efficiently, and implement data-driven traffic control measures. Additionally, accurate 
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vehicle identification contributes to the development of intelligent transportation systems 

(ITS), which facilitate the enhancement of public transport services. 

Within the concept of smart cities, urban planners can leverage AI-driven vehicle 

recognition data to implement better solutions by using the insights derived from traffic 

patterns and vehicle movement analysis for determining optimal locations for roads, 

pedestrian pathways, and public transport facilities. Furthermore, AI-enabled simulations can 

model different urban development scenarios, allowing policymakers to make informed 

decisions on sustainable infrastructure planning. 

Specific Implications: 

- Real-time Traffic Optimization: AI systems can dynamically adjust traffic signals and 

routing based on actual vehicle counts and classifications 

- Predictive Infrastructure Management: ESAL calculations enable proactive 

maintenance scheduling based on actual road usage patterns 

- Data-Driven Urban Planning: Vehicle classification data informs long-term 

infrastructure development and public transport planning 

- Cost Reduction: Automated monitoring reduces manual inspection costs and enables 

targeted maintenance interventions 

7.3 Challenges and Future Research Directions 

Despite its numerous advantages, AI-driven image recognition for vehicle identification 

faces several challenges, including model accuracy in varying environmental conditions, 

computational resource requirements, and ethical concerns regarding data privacy. Future 

work will focus on curating specific datasets for vehicle detection, refining model training 

strategies, and evaluating performance on additional real-world datasets to improve model 

robustness against occlusions, adverse weather conditions, and variations in vehicle 

appearance. Evaluate rigorously the tracking capacity of the trained model and improve the 

model regarding processing frames per second. Additionally, integrating AI with edge 

computing solutions can enhance real-time processing capabilities, making these systems 

more scalable and deployable in urban environments. 
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Specific Challenges Identified: 

- Environmental Robustness: Performance degradation under adverse weather 

conditions and low-light scenarios. 

- Computational Requirements: High GPU power demands limiting deployment to 

less robust models. 

- Dataset Class Imbalance: Underrepresentation of essential vehicle classes 

affecting detection accuracy. 

- Dataset Limitations: Bias in European-centric training data affecting 

generalizability to other regions. 

- Access to road and pavement data to estimate lifespan with consideration to traffic 

load, environmental conditions, and material quality. 

Future Research Directions: 

- Multi-sensor Fusion: Integrating LiDAR or thermal imaging with existing camera 

systems to improve detection accuracy in challenging conditions. 

- Edge Computing: Developing lightweight models for local device deployment to 

reduce latency and bandwidth demands. 

- Adaptive Learning: Creating mechanisms for systems to evolve with changing urban 

environments and vehicle designs. 

- Dataset Diversification: Collaborative efforts with cities worldwide to create more 

representative training datasets. 

- Advanced Tracking Algorithms: Implementing more sophisticated multi-object 

tracking to handle complex urban scenarios. 

- Real-time ESAL Integration: Developing live ESAL calculation and alert systems for 

immediate maintenance prioritization. 

- Integration with legacy systems: Explore the possibility of integrating these models 

with legacy traffic management systems. 

Based on experimental results, specific improvements are needed: 
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- The model achieves a reasonable balance between precision and recall but may 

benefit from additional training data to reduce missed detections and increase 

precision. 

- Fine-tuning hyperparameters such as the learning rate and batch size to further 

optimize model performance. 

- Diversify and add better quality images and annotations originally in YOLO format 

to avoid annotation conversion. 

- Diversify the dataset with more vehicle classes and models to specialize the model in 

vehicle detection. 

Despite current limitations, this research establishes a viable framework for future 

expansion and demonstrates the significant potential of AI-powered vehicle recognition 

systems to transform urban mobility and infrastructure management. The system's modular 

design provides a scalable foundation for city-wide deployment. Future work will focus on 

integrating edge computing and multi-camera networks to transform the prototype into a 

comprehensive, city-scale predictive maintenance platform. 
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