

MASTER'S DEGREE IN WEB TECHNOLOGY

AND SYSTEMS ENGINEERING

AI-Powered Vehicle Image Recognition for Smart

Urban Planning and Traffic Management

Paulo André Guimarães

Supervisor: Firmino Oliveira da Silva

Vila Nova de Gaia

Academic Year 2024-2025

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

© Paulo Guimaraes 2025

All rights reserved.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

I

Acknowledgements

First, I thank Teacher Firmino Silva for guiding me in this master course from the very

beginning. Deep thanks to my family for supporting me in this process of pursuing changes

and self-realization. And, to Engineer Afonso Costa and F. Vaal, just to let you know that

you’ve done a lot to this very soul responsible for this document.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

II

INSTITUTO POLITÉCNICO DE GESTÃO E TECNOLOGIA

AI-Powered Vehicle Image Recognition for Smart

Urban Planning and Traffic Management

Paulo André Guimarães

Aprovado em 16/12/2025

Composição do Júri

Presidente

Prof. Doutor Jorge Pereira Duque

Arguente

Prof.ª Doutora Célia Talma Gonçalves

Orientador

Prof. Doutor Firmino Oliveira da Silva

Vila Nova de Gaia

2025

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

III

Projeto de Mestrado realizado sob a orientação do

Professor Doutor Firmino Oliveira da Silva,

apresentado no ISLA - Instituto Politécnico de

Gestão e Tecnologia de Vila Nova de Gaia para

obtenção do grau de Mestre em Engenharia de

Tecnologias e Sistemas Web, conforme o

Despacho nº 9371/2020.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

IV

Abstract

Modern cities face complex challenges in traffic management and road maintenance,

which impact both quality of life and infrastructure efficiency. AI-powered vehicle image

recognition offers a promising solution by transforming visual data into actionable insights

for optimized transportation planning and predictive infrastructure maintenance.

Artificial Intelligence enables complex, data-driven tasks through machine learning, with

computer vision processing visual data to extract actionable insights in urban environments.

By leveraging vehicle identification and object detection, AI enhances urban planning and

transportation systems, optimizing traffic flow, reducing congestion, and improving safety,

while also enabling proactive infrastructure maintenance through real-time analysis. Recent

advances in deep learning and convolutional neural networks have introduced robust, real-

time image recognition capabilities that offer practical solutions for the challenges of urban

mobility and infrastructure management.

This work focuses on the development of an AI-driven image recognition application for

vehicle identification, aimed at supporting integrated urban planning, transportation systems

optimization, and infrastructure monitoring. The research begins with an overview of

artificial intelligence, machine learning, and deep learning principles, with particular

emphasis on the architecture and effectiveness of CNNs in object detection tasks. A

structured methodology is presented, detailing the proposed architectural system, selection

of relevant datasets, data annotation processes, and experimental setup. Special attention is

given to the implementation of state-of-the-art object detection models, such as YOLO (You

Only Look Once), trained and evaluated using the mixed COCO+BDD100k dataset within

the PyTorch framework, and optimized through GPU acceleration to achieve high-speed

inference and detection accuracy. Based on the Design Science Research methodology, this

work developed a real-time vehicle tracking system using a YOLOv11n, achieving a

detection precision of approximately 78% and a Multi-Object Tracking Accuracy (MOTA)

of 67.5%, successfully demonstrating capabilities for vehicle counting, speed estimation, and

ESAL calculation to support urban planning and predictive maintenance.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

V

Furthermore, the study discusses the system's potential to integrate with urban monitoring

platforms, offering real-time data streams for city planners and traffic authorities. The

findings underscore the transformative potential of AI in advancing urban mobility, safety,

and infrastructure resilience, while also identifying avenues for future research, including the

integration of multi-source data, scalability challenges, and adaptive learning mechanisms

for evolving urban environments.

KEYWORDS: Artificial Intelligence (AI); Vehicle Image Recognition; Urban Planning;

Transportation Management; Deep Learning; Smart Cities

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

VI

Resumo

As cidades modernas enfrentam desafios complexos na gestão do tráfego e manutenção

de estradas, o que impacta tanto a qualidade de vida quanto a eficiência da infraestrutura. O

reconhecimento de imagens de veículos com IA oferece uma solução promissora ao

transformar dados visuais em informações acionáveis para um planeamento de transporte

otimizado e uma manutenção preditiva da infraestrutura.

A Inteligência Artificial permite tarefas complexas e orientadas por dados através da

aprendizagem máquina, sendo que a visão computacional processa dados visuais para extrair

informações acionáveis em ambientes urbanos. Ao alavancar a identificação de veículos e a

deteção de objetos, a IA melhora o planeamento urbano e os sistemas de transporte,

otimizando o fluxo de tráfego, reduzindo congestionamentos e melhorando a segurança, além

de permitir uma manutenção proativa da infraestrutura através de análise em tempo real.

Avanços recentes em aprendizagem profunda e redes neuronais convolucionais introduziram

capacidades robustas de reconhecimento de imagem em tempo real que oferecem soluções

práticas para os desafios da mobilidade urbana e gestão de infraestruturas.

Este trabalho foca-se no desenvolvimento de uma aplicação de reconhecimento de

imagem orientada por IA para identificação de veículos, com o objetivo de apoiar o

planeamento urbano integrado, a otimização dos sistemas de transporte e a monitorização de

infraestruturas. A investigação começa com uma visão geral dos princípios de inteligência

artificial, aprendizado de máquina e aprendizagem profunda, com ênfase particular na

arquitetura e eficácia das CNNs em tarefas de deteção de objetos. É apresentada uma

metodologia estruturada, detalhando o sistema arquitetónico proposto, a seleção de conjuntos

de dados relevantes, os processos de anotação de dados e o enquadramento experimental. É

dada atenção especial à implementação de modelos de deteção de objetos de última geração,

como o YOLO, treinados e avaliados usando o conjunto de dados do COCO+BDD100k no

ambiente PyTorch, e otimizados através de aceleração por GPU para alcançar alta velocidade

de inferência e precisão de deteção. Com base na metodologia Design Science Research, este

trabalho desenvolveu um sistema de rastreamento de veículos em tempo real usando um

YOLOv11n, alcançando uma precisão de deteção de aproximadamente 78% e uma Multi-

Object Tracking Accuracy (MOTA) de 67,5%, demonstrando com sucesso capacidades para

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

VII

contagem de veículos, estimativa de velocidade e cálculo de ESAL para apoiar o planeamento

urbano e a manutenção preditiva.

Além disso, o estudo discute o potencial do sistema para se integrar a plataformas de

monitorização urbana, oferecendo fluxos de dados em tempo real para planeamento urbano

e autoridades de trânsito. As conclusões reforçam o potencial transformador da IA no avanço

da mobilidade urbana, segurança e resiliência das infraestruturas, enquanto identifica

direções para pesquisas futuras, incluindo a integração de dados de múltiplas fontes, desafios

de escalabilidade e mecanismos de aprendizagem adaptativa para ambientes urbanos em

evolução.

PALAVRAS-CHAVE: Inteligência Artificial (IA); Reconhecimento de Imagens de

Veículos; Planeamento Urbano; Gestão dos Transportes; Deep Learning; Cidades

Inteligentes

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

VIII

Summary

Acknowledgements ... I
Abstract ... II
Resumo .. VI
Summary ... VIII
List Of Figures .. X
List Of Tables .. XI
Acronyms ... XII
1. Introduction .. 2

1.1 Context... 2

1.2 Motivation .. 3

1.3 Purpose .. 4

1.4 Method ... 6

1.5 Structure of the document ... 6

2. Artificial Intelligence in Urban Planning and traffic management 8

2.1 Artificial Intelligence and Its Role in Urban Planning ... 8

2.2 Artificial Intelligence for traffic management and Smart Cities 9

2.3 Machine learning and Computer Vision ...11

2.4 Deep Learning .. 13

2.4.1 Convolutional Neural Networks ... 14

2.4.2 Image classification ... 17

2.4.3 Object detection ... 19

2.5 Traffic Volume Impact on the Roads ... 22

2.5.1 An AI & Computer Vision Approach for Vehicle Counting and Classification .. 24

2.6 Related Works .. 24

3. System Design and Methodology ... 27
3.1 Research Methodology and Development Approach ... 27

3.2 System requirements .. 27

3.3 Proposed System Architecture .. 29

3.3.1 Architectural Principles and Patterns .. 29

3.3.2 Structural Diagrams ... 30

3.3.3 Core Domain Models ... 33

3.3.4 Runtime Components .. 35

3.3.5 Summary table: Core Domain Models and Runtime Components 36

3.4 System Implementation .. 37

3.4.1 Technologies and Tools .. 37

3.4.2 Applied Design Patterns ... 39

3.5. Core Algorithms .. 42

3.5.1 Vehicle Detection with YOLO ... 42

3.5.2 Multi-Object Tracking with BYTETrack .. 43

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

IX

3.5.3 Virtual Line Counting Algorithm and Speed Average Calculation 44

3.5.4 ESAL Calculation for Predictive Maintenance ... 46

4. Chapter 4: Experimental Setup ... 48
4.1 Dataset Selection and Preparation ... 48

4.2 Model Training (YOLO) .. 49

4.2.1 Environment Setup (Hardware/Software)... 49

4.2.2 Training Configuration and Hyperparameters .. 51

4.3 Prototype Application Development ... 52

4.3.1 Backend (FastAPI) and Frontend (Streamlit) Setup) .. 52

4.3.2 Testing Scenario .. 53

4.4 Evaluation Methodology .. 54

4.4.1 Performance Metrics .. 54

4.4.2 Experimental Protocol ... 55

5. Results and Discussion ... 58

5.1 Model Training Performance (Loss Curves) ... 58

5.2 Detection and Tracking Performance Metrics ... 59

5.3 Qualitative analysis of the model .. 60

5.4 Important Fine-tune considerations ... 62

5.4 Prototype Application Demonstration ... 63

5.5 Discussion of Limitations ... 65

6. Practical Application and Impact Analysis .. 66
6.1 The Role of Traffic Volume in Infrastructure Degradation 66

6.2 Predictive Maintenance Framework .. 67

6.3 Case Study: Traffic Context in Portugal .. 67

6.4 Integration into Smart Urban Ecosystems ... 68

6.4.1 Real-Time Traffic Monitoring and Road Degradation 68

6.4.2 Predictive Maintenance.. 68

6.4.3 Smart City Integration ... 69

6.4.4 Case Studies .. 69

Future Directions ..Error! Bookmark not defined.

7. Conclusion and Future Work .. 70

7.1 Synthesis of Contributions .. 70

7.2 Implications for Urban Planning and Traffic Management 71

7.3 Challenges and Future Research Directions .. 72

Bibliography .. 75
Appendix ... 81

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

X

List Of Figures

Figure 1.1: Method for Applying AI in vehicle classification .. 6

Figure 2.1: Components of Intelligent Traffic management System, adapted from (Saini &

Sharma, 2025) .. 10

Figure 2.2: Application of CV techniques for different urban planning tasks. 12

Figure 2.3: Process of a convolutional neural network. ... 14

Figure 2.4: Convolutional Neural Network (CNN) architecture (Abubakr et al., 2024) . 15

Figure 2.5: Distinction between a fully connected layer and dropout layer (Zhao et al.,

2024) .. 17

Figure 2.6: Data flow diagram for image classification (Zhao et al., 2024). 18

Figure 2.7: Example of labelled and unlabelled data. From (Serrano, 2021)................... 19

Figure 2.8: Two-stages detectors (Zhao et al., 2024). ... 20

Figure 2.9: One-stage detector, from (Zhao et al., 2024). ... 20

Figure 2.10: R-CNN Architecture(Neha et al., 2024).. .. 20

Figure 2.11: Fast R-CNN architecture (Neha et al., 2024)... 21

Figure 3.1: Development approach ... 27

Figure 3.2: Component diagram of the real-time vehicle tracking system (Frontend,

FastAPI backend, vision pipeline, sources, and outputs) ... 31

Figure 3.3: Main sequence of operations from user action to real-time processing and

reporting. ... 32

Figure 3.4: Computer vision pipeline for the system. .. 42

Figure 4.1: How it works.. 52

Figure 4.2: System setup. ... 53

Figure 4.3: User interface ... 54

Figure 5.1: Loss curve evaluation graphics and precision evaluation graphics. 59

Figure 5.2: ByteTrack performance evaluation. .. 60

Figure 5.3: Metrics comparison Yolo1n.pt and the mixed model dataset. . Error! Bookmark

not defined.

Figure 5.4:Santo Ovidio's metro station (a)... 61

Figure 5.5: Santo Ovidio's metro station (b). .. 62

Figure 5.6: Vila Nova de Gaia, Canelas, A29. ... 62

Figure 5.7: Prototype webpage demonstration. ... 64

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

XI

List Of Tables

Table 2.1: Elements of Computer Vision. ... 13

Table 2.2: Quantitative Performance Comparison of Object Detection Models on different

Dataset (Zhao et al., 2024). .. 21

Table 2.3: Overload ESAL and W18 values calculation for 2021, from (Putri et al., 2024) 22

Table 2.4: Related work summary. ... 25

Table 3.1: Functional requirements of the system ... 28

Table 3.2: Non-functional requirements.. 28

Table 3.3: Domain requirements ... 28

Table 3.4: Core Domain Models and Runtime Components summary. 36

Table 3.5: Technologies and tools. .. 38

Table 4.1: Datasets comparison. ... 48

Table 4.2: Hardware speficifications. ... 50

Table 4.3: Software specification.. 50

Table 4.4: Prototype essential tools. ... 53

Table 4.5: Success criteria .. 56

Table 5.1:Metrics comparison Yolo1n.pt and the mixed model dataset,............................. 61

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

XII

Acronyms

AAT – Average Annual Traffic

ADT – Average Daily Traffic

AI - Artificial intelligence

BDD100k – Berkeley Deep Drive 100K

CNN – Convolutional Neural Network

COCO – Common Objects in Context

CQRS – Command Query Responsibility Segregation

CPU – Computer Processing Unit

CV – Computer Vision

DDD – Applying Domain-Driven Design

DM – Deep Learning

DSR – Design Science Reasearch

ESAL – Equivalent Single Axle Load

FPS – Frame Per Second

GPU – Graphic Processing Unit

IDF1 – Identity F1 score

ILS – Image Labeler Suite

IoT – Internet of Things

IoU – Intersection over Union

ITMS – Information Traffic Management System

ITS – Information Traffic System

LHR – AAT

mAP – Mean Average Precision

ML – Machine Learning

MOTA – Multi Oblect Tracking Accuracy

NLP – Neural Language Processing

OSE – Onthological Search Engine

ReLU – Rectified Linear Unit

REST – Representational State Transfer

RCNN – Recursive CNN

SPP – Spatial Pyramid Pooling-Net

SSD – Single Shot MultiBox Detector

UI – User Interface

VDF – Vehicle Damage Factor

YOLO – You Look Only Once

2

1. Introduction

1.1 Context

Modern urban environments face increasing challenges related to traffic congestion, road

safety, and the timely maintenance of infrastructure. As vehicle density rises and cities grow

more complex, traditional traffic monitoring systems often fail to provide real-time, accurate

data necessary for efficient urban management. To address these gaps, advanced sensor

technologies are being adopted such as those used by the U.S. Department of Transportation,

(2024) to monitor cracks and structural weaknesses in bridges—enabling early detection,

timely repairs, and the prevention of catastrophic failures while improving safety, reducing

costs, and extending infrastructure lifespan. In parallel, integrating AI-powered image

recognition for vehicle identification offers a powerful solution, by enabling real-time traffic

flow analysis, early detection of road degradation, and more effective urban planning (Di

Grande et al., 2024)

Artificial Intelligence (AI) has evolved to revolutionize industries and societies

worldwide, particularly through the advent of machine learning and deep learning. Computer

Vision (CV), an integral component of AI, endows computers with the capability to analyse

and extract information from visual data, such as images or videos, thereby opening new

frontiers for image processing and analysis across many disciplines (Marasinghe et al., 2024).

The primary objective of this work is to develop and evaluate an AI-driven image recognition

system capable of accurate vehicle detection, classification, and tracking. This system is

designed not only to optimize traffic management but also to support predictive infrastructure

maintenance by calculating traffic-induced road degradation through Equivalent Single Axle

Load (ESAL) metrics. By leveraging a YOLO-based model trained on the mixed dataset

(COCO+BDD100k), this research aims to demonstrate a practical, scalable prototype that

transforms visual data into actionable insights for smarter urban ecosystems.

 As new concepts are being embraced, like smart cities, which are AI driven systems

presented in form of smart traffic lights, noise or air quality prediction, and foot traffic as

well as car traffic prediction faculties, the integration of AI technology with urban planning

practices presents an opportunity for urban planners to enhance their capabilities to analyse

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

3

large urban datasets, recognise patterns and trends, and make informed predictions through

modelling and simulation (Marasinghe et al., 2024). Urban space as a dynamic system,

composed of human and commercial activity, flows of energy and matter, and their

interactions, can no longer be analysed as a static space built of structures and roads. In the

rapidly evolving landscape of our modern digital society accompanied by AI opportunities,

an intelligent city is a beacon for a transformative endeavour that modern smart cities all over

the world are set to embark upon (Kourtit et al., 2024). Exploring AI techniques to detect,

classify and identify these dynamics is particularly important.

1.2 Motivation

In the realm of urban planning and traffic management, accurate car identification can

revolutionize how we plan cities, handle traffic flow, detect violations, manage congestion,

and anticipate infrastructure maintenance. According to Liao, (2022), the constant

improvement of the country’s road infrastructure, the road surface is influenced by

environmental factors, including temperature, traffic load, weathering, which gradually

reduce the pavement structure's strength, eventually leading to various disease characteristics

(such as cracks, rutting, potholes, etc.). With the development of computer vision and deep

learning, image classification, object detection, and segmentation techniques have been

widely employed in the detection of road pavement damages (Ren et al., 2024). Urban

planners can leverage this technology to analyse traffic patterns and vehicle usage, leading

to better infrastructure development and resource allocation.

The potential for improving operational efficiency, safety, and planning underscores the

importance of advancing AI-based car identification systems. Moreover, the dynamic nature

of urban environments necessitates robust and adaptable AI models capable of functioning

under diverse conditions. From varying lighting and weather conditions to different vehicle

angles and occlusions, the need for resilient AI solutions is quite clear. Clearly, in the modern

era, as we recognize the complexities of urban life, the pursuit of enhancing the quality of

life in cities and their neighborhoods has taken center stage (Kourtit et al., 2024). Developing

such solutions requires not only sophisticated algorithms but also extensive and diverse

datasets to train and validate these models. The motivation for this study is driven by the

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

4

transformative potential of AI in image recognition, specifically car identification. By

addressing the inherent challenges and leveraging advanced AI techniques, this research aims

to contribute significantly to the fields of urban planning and traffic management and enhance

the accuracy, efficiency, and applicability of car identification systems, thereby driving

innovation and improving societal outcomes. With this, the research question comes as: How

can AI-powered vehicle image recognition enhance urban planning strategies for traffic

management in cities? So, this study aspires to reach the forefront of this transformative

journey, providing insights and advancements that will help shape the future of urban

management and transportation safety.

1.3 Purpose

To respond the question from previous section, the primary objective of this dissertation

is set to explore and enhance the application of Artificial Intelligence (AI) in image

recognition, aiming to implement a robust AI model capable of accurate and efficient car

identification under diverse conditions, resorting to Convolutional Neural Network (CNN)

architecture and the most recent technologies tailored for object identification, also discuss

concrete cases on early detection of infrastructure degradation. The global and detailed

objectives go as follows:

Global Objective

The general objective of this dissertation is to explore, implement, and evaluate the

application of Artificial Intelligence (AI) in image recognition, with a specific focus on real-

time car detection, classification, and tracking. The goal is to train a robust AI-based system

that operates efficiently under diverse environmental conditions, contributing to

advancements in traffic management and urban planning.

Detailed Objectives

1. Model training and Enhancement:

a. Implement an AI model based on Convolutional Neural Network

(CNN) architecture and the latest object detection technologies.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

5

b. Address challenges in object identification, including variability in car

appearance (colour, modifications).

2. Performance Optimization:

a. Explore techniques to mitigate environmental factors such as low

lighting, occlusions, and adverse weather conditions.

b. Improve the model's ability to differentiate between visually similar

objects.

3. Evaluation and Validation:

a. Conduct thorough evaluation using up-to-date datasets, such as

Cityscapes, Waymo or BDD100k , to ensure accuracy, precision, and

robustness in real-world scenarios.

b. Measure performance using relevant metrics, such as mAP (mean

Average Precision), MOTA (Multi-Object Tracking Accuracy), and FPS

(Frames Per Second).

4. Practical Application:

a. Investigate the practical implications of AI-based car detection and

classification systems in enhancing urban planning, aiding traffic

management, and anticipate road degradation.

b. Analyse integration strategies for deploying the system in real-world

environments, ensuring scalability, reliability, and ease of adoption.

5. Real-Time System Implementation:

a. Develop a web-based interface for real-time visualization of car

detection and tracking, enabling live monitoring of traffic flow and vehicle

categorization.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

6

1.4 Method

To achieve the objectives outlined in this dissertation, a systematic and comprehensive

approach will be employed. The method encompasses several stages (Figure 1.1), from data

collection and preparation to model training, evaluation, and application analysis. Each stage

is critical to ensure the robustness and effectiveness of the AI model for car detection.

Figure 1.1: Method for Applying AI in vehicle classification

By employing these methodologies, this dissertation aims to implement a robust and

effective AI model for car identification, addressing key challenges and demonstrating

practical applications that can enhance urban planning in terms of transportation and traffic

management.

1.5 Structure of the document

This work is organised into seven chapters. The first chapter presents the purpose of the

dissertation, its context, motivation and the process to achieve the desired results. The second

chapter focuses on the state of the art, presenting the background of AI, the basic concepts

and explanation on how it works, a brief history and classification of artificial technologies

considering the capabilities and their components regarding human dissimulation. The

second part of the chapter presents the core of AI, approaching machine learning in general,

then diving into deep learning with the concepts, theoretical foundation and evolution to

neural networks, convolution and recurrent neural networks. The same chapter delves into

image recognition, explaining the key features of this work, image detection and

classification, from the concepts, process, to the technologies that support this essential part

of AI known as computer vision. The last section of the chapter is presented in resume the

Vehicle Data Collection and Preparation

AI Model Training

Evaluation Metrics

Addressing Challenges

Practical Applications and Implications

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

7

most relevant related works from articles, opinions, technologies blogs and tendencies

presented by the giants on AI.

The third chapter of the work explains the general methodology applied to the goals here

proposed, presenting the requirements of the system, technologies and tools. As for the fourth

chapter, focuses on the experimental setup, from training the model to be used in the

prototype and the evaluation through performance metrics observation.

In the last chapters, it is presented the discussion, practical application and the conclusion,

analysing the inherent performance metrics and the limitations, considering the objectives of

the work. Moreover, and an approach on the practical application and impact analysis of AI-

Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management.

Then, the conclusion of the work and suggestions for future works.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

8

2. Artificial Intelligence in Urban Planning and traffic

management

In this chapter, a brief context is presented on Artificial Intelligence, from historical

reference to the theoretical foundation to properly understanding how AI supports urban

planning through image recognition.

2.1 Artificial Intelligence and Its Role in Urban Planning

Urban planners are increasingly using artificial intelligence (AI) to optimise the design

and management of cities, improving decision-making in urban planning (Ponce et al., 2023).

These optimisations and management that resorts to the use of AI, bring new concepts in our

way of life; smart cities, which englobes land use optimisation planning, population growth

prediction, transportation planning, traffic management, environment sustainability, and

infrastructure disaster response and prevention. Central to the development of these smart

cities are Big Data and Artificial Intelligence (AI), two transformative technologies that offer

new ways of managing and analysing urban environments (Ejaz et al., 2025).

Current AI development focuses on five main areas of human dissimilation: Human

learning processing, represented by machine learning (ML); Human thinking processing,

represented by data mining (DM), Human vision, represent by computer vision (CV), Human

language and conversation, represented by Natural Language Processing (NLP), and Human

knowledge – represented by Ontological-based Search Engine (OSE) (Lee, 2020). However,

AI applications in urban planning rely on Machine Learning, Computer Vision, Natural

Language Processing, Predictive Analytics, and additionally Automation and Optimization.

In cities, ML models are used to predict traffic flow, forecast energy usage, or identify

areas at risk of crime. As more data is collected, AI models continuously improve their

accuracy and efficiency (Ejaz et al., 2025). AI-driven predictive analytics helps mitigate

climate change impacts and urban inequalities by forecasting disasters, infrastructure risks,

and socio-economic trends for proactive planning. Moreover, researchers emphasizes its

effectiveness in forecasting congestion, optimizing the movement of vehicles, and promoting

more flexible transportation networks (Igorevich Rozhdestvenskiy & Poornima, 2024).

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

9

Computer vision (CV), an integral component of AI, can be defined as a technological field

that endows computers with the capability to analyse and extract information from visual

data, such as images or videos, thereby opening new frontiers for image processing and

analysis across many disciplines (Marasinghe et al., 2024). It helps with the extraction of

useful information from image and video data, for better comprehension of our environment.

Cutting-edge urban research has employed modern tools including social platforms, mobile

devices, sensor networks, and street-level imagery to gather more extensive datasets and

study city dynamics. CV applications in urban planning rely on various types of data sources,

such as satellite imagery, street view images, photographs, social media images, video data,

and so on, used to identify and understand urban patterns, dynamics, character, growth, land

use change, and socioeconomic challenges (Marasinghe et al., 2024). Automation and

Optimization: AI can automate routine urban tasks, such as traffic signal control or waste

management, by adjusting systems based on real-time data (Ejaz et al., 2025).

In addition, according (Ejaz et al.,2025) effective infrastructure management is crucial for

ensuring cities function efficiently. By implementing predictive maintenance through real-

time monitoring of infrastructure such as roads, bridges, and others distribution systems.

2.2 Artificial Intelligence for traffic management and Smart Cities

The transportation sector is one of the major sectors of the smart city, and over the past

several decades, there have been widespread traffic-related issues due to the fast population

growth and the corresponding rise in the number of vehicles (Saini & Sharma, 2025). Modern

cities explore the capabilities of AI for enhancing traffic and transportation systems. From

predictive algorithms to smart traffic lights, AI systems offer the potential to optimize traffic

flow, reduce delays, and enhance commuter experiences (Francisco et al., 2024). According

(Ogunkan & Ogunkan, 2025), Singapore and New York City have implemented AI-driven

systems for Real-time traffic optimization , and have achieved good results, reducing

congestion and improving mobility.

Intelligent traffic management is applied in transportation to regulate and maintain the

flow of vehicles and people, to avoid congestion, accidents and other inconveniences in

transportation. Intelligent Transportation Systems (ITS) have started to incorporate AI for

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

10

better traffic signal optimization, improving vehicular flow at intersections, where studies

have demonstrated a 25% reduction in congestion through reinforcement learning-based

adaptive traffic lights (Francisco et al., 2024). The main domains of these systems are as

follows:

Figure 2.1: Components of Intelligent Traffic management System, adapted from (Saini & Sharma, 2025)

Smart traffic management systems leveraging AI and IoT are transforming urban mobility

by addressing key challenges like congestion, accidents, and inefficient parking. In Saini &

Sharma (2025), is highlight several implementations of ITMS as presented on Figure 2.1:

- Traffic speed prediction, where AI algorithms, such as those in Singapore’s Smart

Mobility 2030 program, analyze real-time data to optimize traffic flow, reducing delays

during peak hours.

- Traffic congestion prediction systems, like Los Angeles’ ATSAC, use IoT sensors and

machine learning to anticipate and mitigate bottlenecks, cutting peak-time delays by up to

13%.

DOMAINS

OF ITMS

1.

Traffic

Speed

Predictio

n 2.

Traffic

Congesti

on

Predicti

on

3.

Traffic

Predicti

on
4. Rapid

Detection

of

Accidents

/Incident

s

5.

Vehicle

Classifi

cation

6. Smart

Parking

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

11

- Incident detection and classification, where AI-powered systems, such as New York

City’s Connected Vehicle Pilot, quickly identify accidents or disruptions, improving

emergency response times and minimizing road hazards.

- Smart parking solutions, like Barcelona’s IoT-enabled app, guide drivers to available

spots using real-time data, reducing unnecessary circling and lowering emissions by 30%.

- Traffic prediction models, such as those in Beijing and Amsterdam, forecast vehicle

flow and adjust signal timings dynamically, shortening travel times and easing congestion.

- Vehicle classification technologies, including automated license plate recognition

(e.g., NYC’s toll system) and AI-powered cameras (e.g., Shenzhen’s traffic monitoring), help

enforce regulations and streamline toll collection, enhancing efficiency.

AI systems help build accurate data by monitoring the volume of traffic, vehicle flow

density and the environment and infrastructural impact of vehicles on the roads. AI analyzes

the necessary data to predict when maintenance is required, supporting studies like (Wubuli

et al., 2025), on determining of preventive highway maintenance, (Faqih Seknun et al., 2025)

on assessment of road maintenance to reduce potential environmental damage, and more.

2.3 Machine learning and Computer Vision

The field of computer vision has experienced significant growth due to the proliferation

of machine learning technologies (Zhu & Shen, 2025). Computer Vision is about how

computers deal with images, using the most advanced of machine learning features like deep

learning, to perform tasks such as image processing, image classification, object detection,

object segmentation, image colouring, image reconstruction, and image synthesis. Computer

Vision techniques are widely applied across urban research, with methods tailored to specific

study goals, as we can see in Figure 2.2.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

12

Figure 2.2: Application of CV techniques for different urban planning tasks.

Among these, in monitoring and evaluating, we have the essential task for this work:

- Image classification and detection algorithms for issue identification and data

analysis.

- Object tracking for monitoring in implementation/evaluation phases.

- Scene classification and feature extraction for diverse analytical purposes, enable

robust extraction of spatial and behavioral insights from visual data, supporting

various stages of urban planning.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

13

According to (Cernadas, 2024) computer vision applications involve the integration of

elements such as in the table 2.1:

Table 2.1: Elements of Computer Vision.

Support for

data recording

Type of input

data

Machine vision-

related aim of the

application

Type of

processing

Experimental

testing

Microscopes;

UAVs;

satellites;

robots; MRI, X-

ray, and CT

devices; and

others

2D images,

videos, radar,

LIDAR

Detection or

recognition, image

segmentation, image

classification, 3D

modeling or

reconstruction,

object tracking,

defect detection,

object counting or

measurements from

images, and visual

inspection, among

others.

nonlearning-

based

methods,

learning-

based

methods, and

hybrid

methods

Datasets

Machine learning encompasses three primary approaches: supervised, unsupervised, and

reinforcement learning. Supervised learning uses labeled data to make predictions, with

techniques like linear regression modeling straightforward relationships, and nonlinear

regression handling more complex patterns. Unsupervised learning, in contrast, works with

unlabeled data to uncover hidden structures through clustering (grouping similar data points),

dimensionality reduction (simplifying data while preserving key features), and generative

models (creating new, similar data). Finally, reinforcement learning operates on a trial-and-

error basis, where an agent learns optimal actions by interacting with the environment and

receiving feedback in the form of rewards, making it ideal for applications like game AI and

robotics. Together, these methods provide powerful tools for extracting insights and building

intelligent systems across diverse domains.

2.4 Deep Learning

Deep Learning(DL) is a branch of Machine Learning that focuses on artificial neural

networks with multiple layers of interconnected neurons (Krauss, 2024), and the depth is

defined by the numbers of layers. As in the brain, the neuron is also the fundamental

processing unit in many areas of AI (Krauss, 2024). In recent years, deep learning (DL)

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

14

models have yielded a new generation of computer vision methods, such as convolutional

neural networks (CNN) and transformers. CNNs are employed to analyze traffic image feeds,

detecting congestion by recognizing patterns such as vehicle density, movement, and speed,

making them effective for spatial pattern recognition in traffic data (D et al., 2025), and have

become the standard DL-based approaches for many recognition tasks.

2.4.1 Convolutional Neural Networks

Convolutional neural network (CNN) uses weight sharing strategy to explore similar

structures that occur in different locations in an image. Through sharing the convolutional

weights locally for an entire image, this drastically reduces the amount of parameters that

need to be learned and render the network equivalent with respect to translations of the input

(i.e., the number of weights no longer depends on the size of input image) (Jiang et al., 2019).

In CNN, convolutional layers work by gathering the input data, then filtering to detect

specific features like edges, corners, or textures. Then a complete check on the data for

similarities with the filters, the convolution process, producing a matching table or feature

map. Then, the results are passed through an activation function that decides which patterns

to keep.

𝑋𝑘
𝑙+1 = 𝜎(𝑊𝑘

𝑙 × 𝑋𝑙 + 𝑏𝑘
𝑙)

Formula 2.1

The formula says: take the input 𝑋𝑙, apply the convolution 𝑊𝑘
𝑙, add the bias 𝑏𝑘

𝑙 , and

pass it through the activation function 𝜎 to get the next layer's output 𝑋𝑘
𝑙+1. As we can see

summarised in Figure 2.3.

Figure 2.3: Process of a convolutional neural network.

The basic architecture of a convolutional neural network is shown in the figure below.

Slide kernels over the
input.

Detect patterns.

Pass the results
through a function to
decide which patterns

matter.

Repeat for deeper
layers to learn more
complex features.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

15

Figure 2.4: Convolutional Neural Network (CNN) architecture (Abubakr et al., 2024) .

The core component of CNNs is the convolutional layer, which is always at least their

initial layer (Abubakr et al., 2024). As presents the figure 3, CNNs start with the convolution

layer, applying a filter (kernel) to the input image. This kernel strides over the image, block

by block, where each block is a collection of pixel cells. During this process, it performs

matrix multiplication, which results in a lower resolution image. Typically, a CNN is

structured in two main sections, feature extraction and the classification process. A basic

CNN for classification task is made up by a convolution layer, Pooling layer, Activation

function, Batch normalisation, Dropout, Fully connected layer.

Pooling layer: In short, the pooling procedure, like the convolution process, can be

thought of as a pooling function without weights, in which the input feature mapping group

is divided into many regions and each area is pooled to yield a value as a generalisation of

this region (Zhao et al., 2024).

Activation function: An activation function called a rectified linear unit (ReLU) is one of

the most popular DL activation functions that addresses the problem of vanishing gradients

and adds the property of nonlinearity to a DL model (Abubakr et al., 2024), it is a

mathematical operation applied to the output of a filter. It serves a crucial role in neural

networks by enhancing their representational power and learning ability. In a neural network,

each layer’s input and output involve a linear summation process, meaning the output of one

layer is essentially a linear transformation of its input. The activation function’s primary goal

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

16

is to provide the model with the nonlinearity property (Abubakr et al., 2024). This enables

the neural network to approximate complex nonlinear functions, expanding its applicability

to a broader range of nonlinear problems.

Batch normalisation: The whole idea of gradient descent is to minimise the objective

function by iteratively updating the parameters in the opposite direction of the gradient of the

objective function (Zhao et al., 2024). Gradient descent is an optimization technique that

minimizes an objective function by iteratively adjusting parameters in the opposite direction

of its gradient (since the gradient points in the direction of steepest ascent). The algorithm

works by randomly initialized parameter value, then compute the gradient of the objective

function at that point. Update the parameters by moving in the negative gradient direction,

and repeat this process until the function value converges (changes negligibly) or a

predefined iteration limit is reached.

Dropout: it is a regularisation technique that improves generalisation by randomly

deactivating network units or connections with a fixed probability during training. This

process creates multiple "thinned" network variants, and the resulting trained network, with

its optimized weights, serves as an effective approximation of the ensemble of these variants

(Figure 2.5b).

Fully connected layer: A fully connected layer is a global operation, unlike convolution

and pooling, and is usually used at the end of a network for classification. Each neuron in the

fully connected layer connects to all neurons in the previous layers (Figure 2.5a). After

convolution and pooling extract sufficient image features, the fully connected layer handles

classification.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

17

Figure 2.5: Distinction between a fully connected layer and dropout layer (Zhao et al., 2024)

Typically, CNNs flatten the final feature maps into a vector, which is then passed to a fully

connected layer and output layer for classification. For instance, in a three-class image

problem, the output layer would have three neurons. The fully connected layer also combines

local, class-specific features from earlier convolution or pooling layers

In summary, CNNs process data through five key layers; pooling summarizes feature map

regions, activation functions introduce nonlinearity for complex pattern learning, batch

normalization stabilizes training by optimizing gradient descent, dropout prevents overfitting

through random neuron deactivation, and fully connected layers integrate features for final

classification; all working together to enable efficient extraction, transformation, and

classification of hierarchical features from input data."

2.4.2 Image classification

Image classification is an algorithm that predicts a class label given an input image (Bird

& Lotfi, 2024). CNNs represent one of the most powerful deep learning approaches for image

classification. The main process of image classification includes preprocessing the original

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

18

image, extracting image features, and classifying the image using a pre-trained classifier, in

which the extraction of image features plays a pivotal role (Zhao et al., 2024).

Figure 2.6: Data flow diagram for image classification (Zhao et al., 2024).

In Figure 2.6, the input image is processed by the CNN model which extracts features and

generates predicted values, these are compared to the true values using a loss function

(Softmax) to calculate the error, if the error exceeds the allowable range the model updates

its parameters by computing the error gradient and adjusting neuron weights, repeating this

process until the error falls within range, at which point the final image classification is

output. For this, it is important for the data (image) to be effectively annotated (labelled).

Where, image labelling consists in mapping visual features to semantic and spatial labels

effectively describing image content, with "label" and "annotation" often used

interchangeably in the literature (Sager et al., 2021). It comprises five steps:

1. Data Collection

2. Labelling(annotation)

3. Postprocessing

4. Quality assessment

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

19

5. Data exportation

The first step of image labelling is Data collection, which is gathering the images or

videos, depending on the data, and describing the image with sentences, keywords,

taxonomies, ontology, and others. This process can be done manually or automated by

software (Image Labelling Software - ILS), depending on the goals. The figure below

illustrates the concept of labeled data.

Figure 2.7: Example of labelled and unlabelled data. From (Serrano, 2021)

Let us understand that annotated data is data that comes with a tag or label, and the label

can be a type or a number. As for unannotated or unlabelled data, it is the data that comes

with no tag. Assessing the quality of the labelling is important for the performance of any

supervised model, by interpreting errors and similarities to deal with bias. For this

assessment, ILS like labelme, Roboflow, and others can be used.

2.4.3 Object detection

Object detection serves as a foundational computer vision task, enabling solutions for

more advanced applications like image segmentation, object tracking, and activity

recognition (Zhao et al., 2024). In recent years, researchers have concentrated on devising

CNN-based object detectors to achieve real-time detection (A. Wang et al., 2024a). The

process goes through training a classifier to distinguish the desired object and non-desired

object in fixed-size image windows, assigning high scores to desired object and low scores

to non-desired object.

There are two classes of deep learning object detection, the two-stages methods and one-

stage methods, as we can see on the figure:

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

20

Figure 2.8: Two-stages detectors (Zhao et al., 2024).

Figure 2.9: One-stage detector, from (Zhao et al., 2024).

Two-stages detectors

In Figure 2.8, we have the basic workflow of two-stage object detectors where first an

input image is processed, then region proposals are extracted to identify potential object

locations, after which CNN features are computed for each proposed region, and finally these

features are classified to determine the object categories, demonstrating the sequential

localization-then-classification approach characteristic of architectures like R-CNN, as

shows the Figure 2.10; Faster Region-based Convolutional Neural Network (Faster R-CNN)

which is an evolution of Fast Region-based Convolutional Neural Network (Fast R-CNN) as

we can see on figure 2.11; Mask R-CNN and Spatial Pyramid Pooling-Net (SPP-Net).

Figure 2.10: R-CNN Architecture(Neha et al., 2024)..

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

21

Figure 2.11: Fast R-CNN architecture (Neha et al., 2024).

One-stage detector

The one-stage detector, Figure 2.9, begins with an input image which is processed through

feature extraction to generate hierarchical representations, then directly predicts both the

bounding box coordinates for object locations and category probabilities for object

classification in a single unified step, increasing speed by bypassing region proposals (Neha

et al., 2024). Models like Single Shot MultiBox Detector (SSD) and You Look Only Once

(YOLO) were developed achieving a high inference speed, as we can see in Table 2.2.

However, compared to two-stage detectors, the detection accuracy is less accurate (Zhao et

al., 2024).

For comparison purposes, the table below shows the percentage of the mean Average

Precision(mAP) for different detectors.

Table 2.2: Quantitative Performance Comparison of Object Detection Models on different Dataset (Zhao et al., 2024).

Model Type Pascal

VOC

(mAP)

COCO

(mAP)

ImageNet

(mAP)

Open

Images

(mAP)

Inference

Speed (FPS)

Model

Size

(MB)

RCNN 2-stage 66% 54% 60% 55% ~5 200

Fast

RCNN

2-stage 70% 59% 63% 58% ~7 150

Faster

RCNN

2-stage 75% 65% 68% 63% ~10 180

Mask

RCNN

2-stage 76% 66% 69% 64% ~8 230

YOLO 1-stage 72.5% 58.5% 61.5% 57.5% ~45–60 145

SSD 1-stage 75% 63.5% 66.5% 61.5% ~19–46 145

Architectures like YOLO and SSD that uses one-stage detectors, it is prioritized speed as

for they are often used in real-time applications. YOLO (You Only Look Once) has emerged

as a key player in real-time object detection, and it exceeds other models in inference speed.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

22

It is built on cutting-edge advancements in deep learning and computer vision, offering

unparalleled performance in terms of speed and accuracy (Ultralytics, 2025).

2.5 Traffic Volume Impact on the Roads

Average daily traffic (ADT) and average annual traffic (AAT or LRH) are two types of

traffic data important in transportation planning (Putri et al., 2024). Where, according to Putri

et al. (2024), ADT refers to the number of vehicles that pass an observation point for 24

hours, while LHRT is the number of vehicles that pass an observation point for 24 hours

calculated throughout the year. The capacity of road pavement construction is in terms of the

number of repetitions (trajectories) of the load of the axis of the traffic wheel in a standard

axle load unit known as the ESAL (Equivalent Single Axle Load) unit (Solahudin & Susanto,

2025). Where, to measure the damage that truck axles cause to roads, experts use a standard

unit. This unit represents the damage from a single axle carrying 18,000 pounds (which is

about 8 tons) (Putri et al., 2024; Solahudin & Susanto, 2025), and it is called "damage value

of 1.", or Vehicle Damage Factor (VDF), essential for determining pavement thickness.

The AASHTO 1993 design method counts all the heavy vehicles that will use a road over

its lifetime (W18)). Since traffic isn't spread evenly, it uses simple rules to focus only on the

trucks in the busiest lane, which is the one that determines how thick the road needs to be.

Table 2 analyzes how different types of trucks contribute to road damage over a year, where

car is categorized by classes. Table 2.3 also considers truck load as critical factor; A single

loaded truck like a 7a does thousands of times more damage than an empty one of the same

class. This is quantified using "VDF" (Vehicle Damage Factors) and summed up into a final

"ESAL" number, which represents the total wear and tear. The key takeaway is that a small

number of overloaded heavy trucks (contributing to a total of 10,922 ESALs) are responsible

for the overwhelming share of the pavement damage, which is equivalent to over 626,000

passes of a standard 18,000-pound axle.

Table 2.3: Overload ESAL and W18 values calculation for 2021, from (Putri et al., 2024)

Vehicle

Class

Vehicle

Axle

Fill/Empty LHR

2021

Standard

LHR

2021

Overload

VDF

Standard

VDF

Overload

ESAL

2021

2 1.1 Standard 3125 0 0.0005 0.0005 1.56

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

23

3 1.1 Standard 783 0 0.0007 0.0007 0.55

4 1.1 Standard 595 0 0.0286 0.0286 17.01

5a 1.2 Standard 4 0 2.6 2.6 10.63

5b 1.2 Standard 7 0 2.6 2.6 19.24

6a 1.2 L Fill 976 58 0.3 0.64 375.32

6a 1.2 L Empty 309 0 0.1 0.004 30.86

6b 1.2 H Fill 438 55 1 15.26 1317.99

6b 1.2 H Empty 153 0 0.7 0.04 107.26

7a 1.22 Fill 416 55 10.1 11.74 4838.61

7a 1.22 Empty 165 0 2.7 0.02 444.73

7b 1.2 + 22 Fill 36 5 2.2 8.04 118.83

7b 1.2 + 22 Empty 16 0 1.4 0.01 22.62

7c 1.2 – 22 Fill 243 32 8.5 25.59 2885.36

7c 1.2 – 22 Empty 38 0 5.2 0.08 196.41

7c 1.2 – 222 Fill 64 8 3.3 22.66 399.95

7c 1.2 – 222 Empty 13 0 2.5 0.11 31.64

7c 1.22 - 222 Fill 10 1 4.7 29.97 90.78

7c 1.22 - 222 Empty 4 0 3.2 0.18 13.08

TOTAL ESAL Overload 10922.38

W₁₈ Overload 2021 626066.63

To determine the percentage of traffic growth (i) during the service life of a road plan

using the AASHTO (1993) method (Putri et al., 2024), we can use the following formula:

𝑖 = (
𝐴𝐷𝑇𝑛

𝐴𝐷𝑇0
)

1
𝑛 − 1

Formula 2.2

The cumulative ESAL can be computed as:

𝐸𝑆𝐴𝐿 = ∑(𝐴𝐷𝑇𝑐 ∗ 𝑉𝐷𝐹𝑐 ∗ 𝑌)

𝐶

Formula 2.3

Where ADTc is the Annual Daily Traffic for vehicle class c, VDFc is the Vehicle Damage

Factor (based on axle type and weight), and Y is the number of design years.

The remaining pavement life can be estimated as:

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

24

𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐿𝑖𝑓𝑒(%) = 100(1 −
𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑆𝐴𝐿

𝐷𝑒𝑠𝑖𝑔𝑛 𝐸𝑆𝐴𝐿
)

Formula 2.4

2.5.1 An AI & Computer Vision Approach for Vehicle Counting and

Classification

AI and computer vision system, using real-time object detection models, it identifies each

vehicle and assigns it a unique ID. Sophisticated tracking algorithms then follow each

vehicle's movement frame-by-frame, ensuring the same vehicle is never counted twice as it

passes through the monitored area.

The system classifies each vehicle into predefined categories (car, truck, bus, motorcycle)

and tracks its movement to determine traffic direction and count. Based on this classification

and the established Vehicle Damage Factors (VDFs) for each class, the system automatically

calculates the Equivalent Single Axle Load (ESAL), providing a direct metric for assessing

the pavement impact of the observed traffic flow. Additionally, the system calculates the

average speed of vehicle according to the direction of the vehicles.

Finally, all this analyzed information is automatically saved into CSV file or database.

This directly generates the traffic data needed for urban planning and traffic analyses.

2.6 Related Works

Significant research such as Zhao et al. (2024) and Neha et al. (2024), have explored the

integration of artificial intelligence (AI) and computer vision (CV) in car detection,

classification, and tracking. Studies by Yigitcanlar et al. (2020) and Abubakr et al. (2024)

demonstrate the utility of such systems in traffic flow analysis, congestion management, and

infrastructure planning. Kamrowska-Załuska (2021) emphasized the importance of big data

mining and AI in studying dynamic urban systems, highlighting the role of image recognition

in mapping traffic patterns and enabling smart city innovations. The ANST model, developed

by Nadarajan & Sivanraj, (2022), enhances traffic forecasting by merging LSTM networks

with attention mechanisms, effectively incorporating spatiotemporal relationships and

environmental conditions for superior predictive performance. By integrating street view

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

25

images and urban networks, Yap et al (2023), assessed active mobility, leveraging deep

learning to examine the impact of traffic environment factors on subjective choices. To

contend traffic congestion on urban networks, a recent DQL framework by H. Wang et al

(2023), using partial detector inputs showed 3.9-22% improvements over conventional

methods in real-world validation. Latest study by D et al (2025) AI-based traffic systems

combine real-time data and machine learning for accurate congestion detection (94.89%

accuracy) and adaptive signal control, significantly improving traffic flow over traditional

methods.

Recent advances in vehicle recognition have been driven by YOLO (You Only Look

Once) architectures, which enable real-time object detection critical for urban traffic

management. A work by Valdovinos-Chacón et al2025) presented a YOLO-based system that

achieves 96% vehicle detection accuracy for adaptive traffic light control, demonstrating

potential for Latin American cities, combining real-time object detection with IoT

coordination to optimize intersection timing. Tracking algorithms like ByteTrack, Botsort

and DeepSORT have shown promise. ByteTrack's innovative association of low-confidence

detections demonstrates significant improvements (up to +10 IDF1) for urban traffic

monitoring, achieving real-time performance (30 FPS) with 80.3 MOTA accuracy (Zhang et

al., 2022), which is particularly valuable for smart city applications.

Table 2.4: Related work summary.

Authors Year Contribution

Zhang et al. 2022 ByteTrack's innovative association of low-

confidence for object tracking.

Nadarajan & Sivanraj 2022 Enhancement of traffic forecasting by merging

LSTM networks with attention mechanisms.

Abubakr et al. 2024 Utility of AI and Computer vision in traffic flow

analysis, congestion management, and

infrastructure planning.

Zhao et al. 2024 Integration of artificial intelligence (AI) and

computer vision (CV) in car detection,

classification, and tracking.

Valdovinos-Chacón et al. 2025 Presented a YOLO-based system that achieves

96% vehicle detection accuracy for adaptive

traffic light control.

D et al. 2025 Congestion detection with AI-based traffic

systems that combine real-time data and machine

learning.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

26

Table 2.4 summarizes the latest relevant contributions on vehicle recognition with AI,

however, most existing work focuses on either traffic analysis or infrastructure monitoring in

isolation. Few studies comprehensive address how vehicle recognition can directly inform

urban planning decisions for predictive roads maintenance, a gap this research aims to bridge

by developing an integrated framework that connects real-time vehicle analytics with long-

term urban development strategies.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

27

3. System Design and Methodology

3.1 Research Methodology and Development Approach

This work employs the Design Science Research (DSR) methodology, based on De Sordi,

(2021), to design and evaluate a vehicle tracking system framework. DSR is chosen for its

focus on developing IT artifacts that solve practical organizational issues while maintaining

scientific rigor.

The implementation of DSR followed a structured three-phase development approach, as

illustrated in Figure 3.1. First, a computer vision model was trained on an annotated dataset

to establish the core detection capability. Second, this model was implemented and optimized

within a functional software prototype. Third, the system was extended to extract, analyse,

and persist useful traffic information.

Figure 3.1: Development approach

This process ensured the creation of an artifact that fulfils the need for real-time

monitoring of vehicles and road usage. The practical application of this work shows its

relevance on smart cities planning and intelligent transportation, considering that vehicle

detection, tracking and counting can help urban planning and predictive maintenance of

infrastructures by analysing the volume of traffic, improving the flow of vehicle and the

impact on the road degradation.

3.2 System requirements

To guide the development of the system, a comprehensive set of requirements was

established covering functional capabilities, quality attributes, and domain-specific

constraints. These requirements ensure the system meets both technical objectives and

practical urban planning needs.

- Functional requirements

Train a CV model Implement Results

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

28

Table 3.1: Functional requirements of the system

Code Requirements Description

FR01 Vehicle detection The system must detect accurately vehicles on

video frames

FR02 Object tracking The system needs to rigorously maintain identity

of vehicles across frames

FR03 Counting vehicles The system will define a line to count the vehicles

that cross it.

FR05 Different data

source

It needs to be capable of processing data from

different sources, stream and recorded data.

FR06 Calculate Esal The system needs to calculate daily ESAL

variable

FR07 Save reports It needs to create a database for recording the

daily traffic volume data

FR07 Web Interface The system must provide a web interface that

displays the processed video with the detections

and counts updated in real time.

- Non-functional requirements

Table 3.2: Non-functional requirements.

Code Non-Functional Requirement Description

NFR01 Performance: The system must process a minimum of 15

frames per second (FPS) on an Intel i5 CPU

and NVIDIA RTX 1070 GPU.

NFR02 Reliability: The system must maintain availability

greater than 99% during operation, with error

handling for unstable video sources.

NFR03 Maintainability The system must have high cohesion and low

coupling, with a maintainability index greater

than 70 (measured by tools such as

SonarQube).

NFR04 Scalability The architecture must support multiple

concurrent tracing sessions, with resource

isolation.

NFR05 Low Latency

End-to-end latency (capture from frame to

display on the interface) must be less than

500 milliseconds.

- Domain Requirements

Table 3.3: Domain requirements

Code Domain-Requirements Description

DR01 Vehicle Classes Recognize the classes: car, truck, bus and

motorcycle.

DR02 Directional traffic analysis Up/down for horizontal lines, left/right for

vertical lines.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

29

DR03 Pavement impact

estimation

ESAL per class with domain-specific Vehicle

Damage Factors (VDFs).

DR04 Speed estimation Speed estimation: approximate scene-based

conversion (pixels→meters) for indicative

averages.

These requirements collectively ensure the development of a technically robust system

specifically designed for urban intelligence applications. They establish the foundation for

delivering accurate, real-time traffic analytics to support data-driven urban planning and

predictive maintenance, directly informing the architectural design that follows.

3.3 Proposed System Architecture

This section outlines the architectural structure principles and patterns adopted for the

vehicle detection and tracking prototype, ensuring a robust, maintainable, and scalable

system. The architecture is designed to align with the domain requirements, emphasizing

modularity, testability, and performance optimization.

3.3.1 Architectural Principles and Patterns

Clean Architecture

The system is designed according to Clean Architecture principles (Lano & Yassipour

Tehrani, 2023), ensuring that business rules remain independent of frameworks, databases,

and external systems. This separation improves maintainability and testability by isolating

the core logic from infrastructure dependencies. Applying Domain-Driven Design

(DDD)(Junker & Lazzaretti, 2025; Kapferer & Zimmermann, 2020), enables the creation of

a rich domain model for vehicle detection and counting, supported by a shared ubiquitous

language between developers and domain experts. The use of Command Query

Responsibility Segregation (CQRS) further enhances performance by separating read

operations (e.g., metric queries) from write operations (e.g., frame processing)

(«Implementing Command Query Responsibility Segregation (CQRS) in Large-Scale

Systems», 2024), allowing each to be independently optimized and scaled for real-time

processing.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

30

The architecture also follows the Ports and Adapters (Hexagonal) pattern, which

decouples the application’s core from external systems such as hardware interfaces,

databases, or APIs, thereby facilitating component substitution without impacting the core

logic. In addition, the system adopts an Event-Driven Architecture, where domain events

propagate significant occurrences, such as vehicle crossings, across components. This

promotes loose coupling, extensibility, and integration with external systems, including

traffic management or analytics platforms. Collectively, these architectural patterns ensure a

modular, scalable, and maintainable system for vehicle detection and tracking, while

providing flexibility for future enhancements.

3.3.2 Structural Diagrams

Figure 3.2 shows the main components and data/control flows of the proposed system,

where the browser UI communicates with the FastAPI backend over WebSocket for real-time

frames and metrics and via REST for configuration and exports, while the vision pipeline

(FrameReader → YOLO → BYTETrack → VehicleCounter) processes frames from

webcams, uploaded files, or YouTube via yt-dlp to produce counts, directional speeds, and

ESAL summaries.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

31

Figure 3.2: Component diagram of the real-time vehicle tracking system (Frontend, FastAPI backend, vision pipeline,
sources, and outputs)

The component diagram illustrates a streaming-first design: frames flow from the selected

source into the vision pipeline where YOLO performs detection, BYTETrack maintains

identities, and VehicleCounter computes per-class and per-direction counts, speeds, and

ESAL. The backend serves both static assets and dynamic reports (CSV/TXT), and logs

MOT-style outputs for evaluation. The counting line can be set to auto or manual mode via

REST, and changes propagate at runtime to maintain coherent direction metrics.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

32

The sequence traces user-initiated actions (Start/Stop, configuration updates) through the

backend’s streaming pipeline and back to the browser via WebSocket, showing the per-frame

loop and report generation, as seen in Figure 3.3.

Figure 3.3: Main sequence of operations from user action to real-time processing and reporting.

- User initiates processing (Start via uploaded file, webcam, or YouTube) and may later

Stop or change the counting line.

- Frontend (app.js) ensures a WebSocket connection and sends simple control messages

(start/stop); REST endpoints handle configuration and exports.

- Backend (FastAPI) spawns a processing task that opens the source and runs the vision

pipeline.

- Vision pipeline: FrameReader acquires frames; YOLO detects vehicles; BYTETrack

assigns track IDs; VehicleCounter updates counts, directions, speed samples, and ESAL.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

33

- Backend overlays, packages a JPEG frame plus metrics, and pushes them over

WebSocket; the UI renders the image and updates the merged metrics table.

- When the counting axis/position changes, backend applies the config and resets

directional metrics to preserve semantic correctness.

- On Stop or stream end, backend saves a TXT report and supports CSV export from

/export_csv, returning a downloadable URL.

3.3.3 Core Domain Models

This section describes the main domain objects that encapsulate the business logic of

traffic counting, directional analysis, and pavement impact estimation.

1. VehicleCounter (backend/app.py):

- Purpose: Central domain service that turns tracked object motion into domain

metrics: per-class totals, direction splits (up/down or left/right), average speeds, and

ESAL.

- Core state:

 previous_positions, previous_times: last known center and timestamp

per track_id.

 counted_ids: track_ids already counted to prevent double counts.

 vehicle_counts: totals per class (car, truck, bus, motorcycle).

 up_down_counts, left_right_counts, vehicle_direction_counts:

direction-split counts per class.

 counted_speeds_* (up/down/left/right/all): speeds recorded at the

moment of crossing for accurate averaging.

 motion_dx_sum, motion_dy_sum, motion_samples: motion statistics

to infer dominant axis.

 last_counting_axis: last effective axis used for counting in this session.

- Behavior:

 update(track_id, center_x, center_y, class_name, counting_axis,

counting_line_pos, timestamp, frame_dim)

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

34

 Estimates direction along active axis; detects single crossing

per track and updates all aggregates.

 Records “counted-at-crossing” speeds and contributes to

motion statistics (dx/dy).

 get_total_counts()

 Returns a merged metrics view: overall totals, ESAL by class

and total, per-direction counts and ESAL, and average speeds

(overall and by direction).

 get_direction_counts(), reset_directional_metrics(),

get_dominant_axis(min_samples)

 Direction-aware views, safe axis switching (resets directional

aggregates), and automatic axis selection based on observed

motion.

- Contract (inputs/outputs):

 Input: track_id (int), object center (x, y), class_name, counting_axis

(‘x’|‘y’), line position (px), timestamp, frame_dim.

 Output: optional {track_id, class, direction} upon a confirmed

crossing; totals via get_total_counts().

2. Counting Configuration (runtime model):

- counting_config = { axis: 'x'|'y'|null, pos_frac: 0.0–1.0 }

- Semantics: null axis = auto; pos_frac is normalized position. Changing the effective

axis triggers reset_directional_metrics() to keep direction semantics consistent.

- Companion: counter.last_counting_axis captures the runtime-effective axis used in

the current processing loop.

3. Detection/Tracking Entities (conceptual):

- Detection: {box (x1,y1,x2,y2), class_name, conf}

- Track: detection + stable track_id assigned by the tracker, used by VehicleCounter

to compute motion and crossings.

4. ESAL Model (calculate_esal):

- Vehicle Damage Factors (VDF): car=0.0005, motorcycle=0.0001, bus=0.15,

truck=2.0.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

35

- ESAL per class = count × VDF; totals computed both overall and per direction for

maintenance planning.

3.3.4 Runtime Components

This subsection summarizes the concrete components that execute the pipeline and

expose the system at runtime.

1. Frontend UI (frontend/)

- templates/index.html: Controls (Start/Stop/Reset, Upload, YouTube, Counting

mode/position) and merged metrics table (counts, ESAL, average speeds by

direction).

- static/js/app.js: WebSocket client to receive frames/metrics; sends actions (start,

start_youtube, start_camo, stop, reset_counts); REST for configuration

(/set_counting_line, /get_counting_line) and exports (/export_csv, /cameras).

- static/css/styles.css: Visual layout and readability.

2. FastAPI Application (backend/app.py)

- Endpoints:

 GET /: render UI; GET /cameras: quick camera listing.

 POST /upload: persist file; POST /set_counting_line, GET

/get_counting_line: runtime counting config.

 GET /export_csv: build CSV and return download URL via /reports.

- WebSocket /ws/detect:

 Receives control actions: start (uploaded), start_youtube (yt-dlp),

start_camo (webcam), stop, reset_counts.

 Streams base64-encoded JPEG frames and metrics (counts, direction

metrics, ESAL, average speeds, counting axis, last count direction).

3. Vision Pipeline (app.py):

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

36

- FrameReader: threaded cv2.VideoCapture with a bounded queue; supports

path/URL/camera index.

- YOLO (Ultralytics): loads yolo11n.pt; fuses and warms up; uses CUDA FP16 when

available; constrained by INFER_SIZE and MAX_DET.

- BYTETrack (via Ultralytics tracker): maintains stable track IDs for counting.

- VehicleCounter: translates tracks into counts, direction metrics, average speeds, and

ESAL.

4. Sources and Resolvers

- Uploaded videos (backend/uploaded_videos), webcams

(list_cameras/find_camo_camera), YouTube (yt_dlp to direct stream URL).

5. Reporting and Evaluation

- make_report_text() and make_report_csv(): save TXT/CSV under backend/reports,

mounted at /reports.

- MOT-style lines written to EvalTrack/tracker_results.txt for later evaluation.

6. Performance and Environment

- Knobs: INFER_SIZE, JPEG_QUALITY, SEND_EVERY, MAX_DET;

torch.backends.cudnn.benchmark = True.

- NumPy compatibility guard (1.26.x); CUDA used if available with CPU fallback.

These models form the foundation of the system, supporting extensibility for multiple

detection algorithms and counting strategies.

3.3.5 Summary table: Core Domain Models and Runtime Components

Table 3.4: Core Domain Models and Runtime Components summary.

Component Type Responsibilities Key methods/APIs Core data/state

VehicleCoun

ter

Domain Track per‑ID motion,

decide counting axis,

count by direction,

aggregate

speeds/ESAL inputs

update;

get_total_counts;

reset_directional_m

etrics;

get_dominant_axis

vehicle_counts;

up/down/left/right

splits;

counted_speeds_*;

speeds;

last_counting_axis;

previous_positions/tim

es

ESAL

calculator

Domain/utility Compute ESAL totals

by class and by

direction

calculate_esal VDF weights;

esal_by_class;

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

37

esal_by_direction;

totals

Speed

averaging

Domain/utility Robust average

speeds overall and per

direction

calculate_direction_

speeds;

calculate_average_s

peed

counted_speeds_*;

speeds; window,

max_kmh

Counting

config

Domain/config Select axis and line

position (auto or

override)

GET/POST

/get_counting_line,

/set_counting_line

counting_config: axis,

pos_frac

FastAPI

service

Runtime Serve UI, REST, and

WebSocket

FastAPI app;

routes: /, /upload,

/cameras,

/export_csv

reports_dir;

uploaded_video_path;

last_session_start/finis

h

WebSocket

control loop

Runtime Handle

start/stop/youtube/ca

mera actions; push

frames/metrics

/ws/detect;

websocket_endpoin

t

processing_task;

stop_event

Video

processing

loop

Runtime Read frames, run

YOLO+BYTETrack,

update counts, draw
overlays, stream

JPEG

process_video_strea

m

INFER_SIZE,

JPEG_QUALITY,

SEND_EVERY,
MAX_DET;

counting_line_pos; fps;

payloads

Detection+T

racking

Runtime (ML) Class‑filter detections,

tracking IDs,

per‑frame MOT

export

model.track(...,

tracker="bytetrack.

yaml",

classes=[2,3,5,7])

model/device (FP16 on

CUDA); MOT result

file

FrameReade

r

Runtime/helper Non‑blocking frame

ingestion (optional

pattern)

start; get; release background thread;

queue; cap

Rendering/E

ncoding

Runtime/helper Draw

boxes/labels/line/arro

w; JPEG encode

draw_detections_on

_frame;

cv2.imencode

CLASS_COLORS;

counting line overlay

Reporting/E

xport

Runtime/helper Generate TXT and

CSV reports

make_report_text;

make_report_csv;

GET /export_csv

files under /reports;

report_url

3.4 System Implementation

3.4.1 Technologies and Tools

The implementation of the system employed a carefully selected set of technologies and

tools, based on the criteria of maturity, performance, community support and adequacy to the

established architectural requirements. The selection followed the guidelines of («A

Comprehensive Guide to AI Tech Stack», 2025) for choosing a technological stack in

computer vision projects.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

38

Table 3.5: Technologies and tools.

Layer Technology/

Tool

Version Justification Role in

Architecture

Presentation FastAPI 0.104+ Superior performance, native

WebSocket and async/await support

Framework

Web and API

WebSocket Padrão Real-time two-way communication for

video and data transmission.

Real-time

protocol

HTML5,

CSS3,

JavaScript

ES6+ Responsive Interface web and cross-

platform

Frontend

interface

Application Python 3.10+ Broad support for computer vision and

ML, clear syntax, vast library

ecosystem.

Main

Language

asyncio 3.10+ For concurrency and non-blocking I/O

operations.

Asynchronous

Processing

Pydantic 2.0+ Data validation with Python types DTOs and

validation

Domain Pytorch 2.1+ ML framework with GPU support and

widespread adoption in detection

models.

Machine

learning

Ultralytics 8.0+ YOLO implementation, simplified

APIs

Object

detection

Bytrack Robust multi-object tracking algorithm

to occlusions and low FPS.

Multi-object

Tracking

Infrastructure

OpenCV 4.8+ Optimized image/video processing Computer
Vision

NumPy 1.26+ Efficient numerical computation Manipulating

arrays

CUDA 11.8+ NVIDIA GPU Acceleration Hardware

acceleration

yt-dlp 2023+ Extracting YouTube streams External video

sources

FastAPI was chosen for its high performance, automatic OpenAPI documentation, native

dependency injection, and active community. PyTorch was selected over TensorFlow for its

intuitive interface, better debugging, strong research ecosystem, rapid prototyping

capabilities, and compatibility with Ultralytics YOLO.

Critical performance settings:

TORCH_BACKENDS = {
 'cudnn.benchmark': True, # Optimizes convolutions for fixed sizes
 'cudnn.deterministic': False, # Allows for non-deterministic
optimizations
 'matmul.allow_tf32': True, # Mixed Accuracy for Operations
}

INFERENCE_CONFIG = {
 'imgsz': 640, # Precision-speed balancing

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

39

 'fp16': True, # Mixed Precision for Modern GPU
 'max_det': 100, # Limit detections per frame
 'conf': 0.45, # Optimized Confidence Threshold
}

Moreover, dependency and environment management rely on Poetry for streamlined

dependency handling and virtual environments, Git for version control using Conventional

Commits, and pre-commit hooks for automatic code validation.

3.4.2 Applied Design Patterns

The implementation of the system incorporated several design patterns (Gamma et al.,

1994) to ensure modular, extensible, and easy-to-maintain code. The standards applied are

detailed below:

1. Adapter Pattern - Integration with external models:

class IVehicleDetector(ABC):
 @abstractmethod
 def detect(self, frame: np.ndarray) -> List[VehicleDetection]:
 pass

class YOLOVehicleDetector(IVehicleDetector):
 def __init__(self, model_path: str, config: ModelConfig):
 self.model = YOLO(model_path) # Adapts YOLO interface
 self.config = config

 def detect(self, frame: np.ndarray) -> List[VehicleDetection]:
 # Tailors YOLO results for domain
 results = self.model.predict(frame, **self.config)
 return self._parse_detections(results)

2. Strategy Pattern - Interchangeable algorithms:

class ICountingStrategy(ABC):
 @abstractmethod
 def count_vehicles(self, detections: List[VehicleDetection],
 line_position: float) -> CountingResult:
 pass

class LineCrossingStrategy(ICountingStrategy):
 def count_vehicles(self, detections: List[VehicleDetection],
 line_position: float) -> CountingResult:
 # Specific implementation of line crossing
 pass

class AreaBasedStrategy(ICountingStrategy):

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

40

 def count_vehicles(self, detections: List[VehicleDetection],
 area: Polygon) -> CountingResult:
 # Alternative Area-Based Counting Implementation
 pass

3. Factory Pattern - Flexible object creation:

class DetectorFactory:
 @staticmethod
 def create_detector(detector_type: str, config: DetectorConfig) ->
IVehicleDetector:
 if detector_type == "yolo":
 return YOLOVehicleDetector(config.model_path, config)
 elif detector_type == "efficientdet":
 return EfficientDetDetector(config)
 else:
 raise ValueError(f"Unsupported detector: {detector_type}")

class VehicleDetectionFactory:
 @staticmethod
 def from_yolo_result(box, track_id, class_name, frame_id: int) ->
VehicleDetection:
 return VehicleDetection(
 detection_id=uuid.uuid4(),
 track_id=int(track_id),
 vehicle_class=VehicleClass(class_name),
 bounding_box=BoundingBox(*box.xyxy[0].tolist()),
 confidence=float(box.conf),
 timestamp=datetime.now(),
 frame_id=frame_id
)

Applied Behavioral Patterns:

4. Observer Pattern - Real-time notifications:

class TrackingSubject:
 def __init__(self):
 self._observers: List[TrackingObserver] = []

 def attach(self, observer: TrackingObserver):
 self._observers.append(observer)

 def notify_vehicle_crossed(self, event: VehicleCrossedEvent):
 for observer in self._observers:
 observer.on_vehicle_crossed(event)

class WebSocketObserver(TrackingObserver):
 def __init__(self, websocket: WebSocket):
 self.websocket = websocket

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

41

 async def on_vehicle_crossed(self, event: VehicleCrossedEvent):
 await self.websocket.send_json({
 "type": "vehicle_crossed",
 "vehicle": event.vehicle.to_dict(),
 "timestamp": event.timestamp.isoformat()
 })

5. Template Method Pattern - Processing pipeline:

class VideoProcessingPipeline(ABC):
 def process_frame(self, frame: np.ndarray) -> ProcessingResult:
 # Fixed skeleton, variable steps
 preprocessed = self.preprocess(frame)
 detections = self.detect_vehicles(preprocessed)
 tracked = self.track_vehicles(detections)
 result = self.analyze_results(tracked)
 return result

 @abstractmethod
 def preprocess(self, frame: np.ndarray) -> np.ndarray:
 pass

 @abstractmethod
 def detect_vehicles(self, frame: np.ndarray) -> List[VehicleDetection]:
 pass

Additional Creational Standards:

Builder Pattern - Complex session construction:

class CountingSessionBuilder:
 def __init__(self):
 self.session = CountingSession()

 def with_video_source(self, source: VideoSource):
 self.session.video_source = source
 return self

 def with_counting_line(self, position: float):
 self.session.counting_line = CountingLine(position)
 return self

 def with_strategy(self, strategy: ICountingStrategy):
 self.session.counting_strategy = strategy
 return self

 def build(self) -> CountingSession:
 self.session.validate()
 return self.session

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

42

3.5. Core Algorithms

The computer vision pipeline implements state-of-the-art algorithms optimized for the

vehicle tracking domain, following the approaches established in recent surveys (Zhu et al.,

2024). The processing pipeline consists of the following steps:

Figure 3.4: Computer vision pipeline for the system.

3.5.1 Vehicle Detection with YOLO

YOLO (You Only Look Once) is an object detection architecture that performs real time

detection. The YOLOv11n (nano version) was chosen because it offers a balance between

speed and accuracy, essential for real-time applications. Detection is performed on each

frame, producing bounding boxes and confidence scores (Neha et al., 2024; Zhao et al.,

2024).

Technical Architecture:

YOLO_CONFIG = {

 'backbone': 'CSPDarknet', # Efficient feature extraction

 'neck': 'PAN-FPN', # Feature Pyramid Networks

 'head': 'Anchor-free', # Reduced complexity

 'activation': 'SiLU', # Modern nonlinearity

 'normalization': 'BatchNorm', # Training Stability

}

Specific optimizations implemented:

class OptimizedYOLOProcessor:

 def __init__(self):

 self.model = self._load_optimized_model()

 def _load_optimized_model(self):

 model = YOLO('yolo11n.pt')

 if torch.cuda.is_available():

 model = model.half() # FP16 for speed

 model = model.fuse() # Fusion layers for efficiency

 return model

Frame
Acquisit

ion

Preprocessi
ng

YOLO
Detectio

n

BYTETrac
k

Counting
Logic

Results

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

43

3.5.2 Multi-Object Tracking with BYTETrack

BYTETrack (Zhang et al., 2022) is a multi-object tracking algorithm that associates

detections between frames using a strategy of associating high-confidence detections first

and then low-confidence detections, reducing identity switches. The tracker uses the

bounding boxes and scores provided by YOLO and associates them based on spatial

similarity (using IoU - Intersection over Union) and the motion predicted by a Kalman filter.

The output is a list of vehicles with consistent unique IDs throughout the video.

Association Algorithm:

class BYTETracker:

 def track(self, detections: List[VehicleDetection]) ->
List[VehicleDetection]:
 # Separates detections by trust
 high_conf_dets = [d for d in detections if d.confidence > 0.5]
 low_conf_dets = [d for d in detections if 0.1 < d.confidence <= 0.5]
 # First association: high trust
 tracks_updated = self._associate(high_conf_dets, self.active_tracks)

 # Second association: low confidence with non-associated tracks
 remaining_tracks = [t for t in self.active_tracks if t not in
tracks_updated]
 tracks_updated += self._associate(low_conf_dets, remaining_tracks)

 # Booting new tracks
 new_tracks = self._init_new_tracks(high_conf_dets)
 return tracks_updated + new_tracks

 def _associate(self, detections, tracks) -> List[VehicleTracking]:
 # Uses IoU and motion predicted by Kalman Filter
 cost_matrix = self._compute_iou_cost(detections, tracks)
 matches, unmatched = self._linear_assignment(cost_matrix)
 return self._update_matched_tracks(matches, detections, tracks)

Kalman Filter for Motion Prediction:

class VehicleKalmanFilter:

 def __init__(self):

 # State: [x, y, w, h, vx, vy, vw, vh]

 self.kf = cv2.KalmanFilter(8, 4)

 self._setup_transition_matrix()

 def predict(self, track: VehicleTracking) -> np.ndarray:

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

44

 self.kf.predict()

 return self.kf.statePost

 def update(self, detection: VehicleDetection):

 # Measurement: [x, y, w, h]

 measurement = np.array([

 detection.bounding_box.center[0],

 detection.bounding_box.center[1],

 detection.bounding_box.width,

 detection.bounding_box.height

], dtype=np.float32)

 self.kf.correct(measurement)

3.5.3 Virtual Line Counting Algorithm and Speed Average Calculation

The count is performed by means of a virtual line positioned at a fixed x/y-coordinate in

the frame (K% of the height/width of the frame). For each vehicle tracked, the central position

of the bounding box is calculated, and the virtual line has been crossed by comparing the

current position with the previous one. For instance, in case of vertical circulation, the

crossing is recorded when the vehicle's previous position is above the line and the current

one below (or vice versa, depending on the direction set).

Virtual Line Counting Algorithm:

class LineCrossingAlgorithm:
 def __init__(self, line_y: float, direction: str = "downward"):
 self.line_y = line_y
 self.direction = direction
 self.counted_ids = set()
 self.track_history = {} # {track_id: [y_positions]}
 def check_crossing(self, detection: VehicleDetection) -> bool:
 track_id = detection.track_id
 current_y = detection.bounding_box.center[1]
 if track_id not in self.track_history:
 self.track_history[track_id] = []

 # Maintains limited history
 self.track_history[track_id].append(current_y)
 if len(self.track_history[track_id]) > 5:
 self.track_history[track_id].pop(0)

 # Checks for direction-based crossing
 if self.direction == "downward":
 return self._check_downward_crossing(track_id, current_y)
 else:

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

45

 return self._check_upward_crossing(track_id, current_y)

 def _check_downward_crossing(self, track_id: int, current_y: float) ->
bool:
 if track_id in self.counted_ids:
 return False

 history = self.track_history[track_id]
 if len(history) < 2:
 return False

 # Crossing: Was up, now it's down the line
 previous_y = history[-2]
 return previous_y <= self.line_y < current_y

Average speed calculation:

def calculate_average_speed(counter):
 """Calculate overall and direction-specific average speeds based on
counting axis."""
 # Define stopped threshold
 STOPPED_THRESHOLD = 1.0 # km/h

 # Calculate speeds based on counting axis
 axis = getattr(counter, 'last_counting_axis', None) or
counting_config.get("axis") or 'y'
 if axis == "y":
 # For horizontal line, only calculate up/down speeds (counted-at-
crossing only)
 speed_up = calculate_direction_speeds(counter.counted_speeds_up,
STOPPED_THRESHOLD)
 speed_down = calculate_direction_speeds(counter.counted_speeds_down,
STOPPED_THRESHOLD)
 relevant_speeds = {'up': speed_up, 'down': speed_down}
 else:
 # For vertical line, only calculate left/right speeds (counted-at-
crossing only)
 speed_left = calculate_direction_speeds(counter.counted_speeds_left,
STOPPED_THRESHOLD)
 speed_right =
calculate_direction_speeds(counter.counted_speeds_right, STOPPED_THRESHOLD)
 relevant_speeds = {'left': speed_left, 'right': speed_right}

 # For overall average, use all counted-at-crossing speeds (fallback to
all speeds if none yet)
 all_counted = counter.counted_speeds_all if hasattr(counter,
'counted_speeds_all') else []
 if not all_counted:
 overall_avg = calculate_direction_speeds(counter.speeds,
STOPPED_THRESHOLD)
 else:

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

46

 overall_avg = calculate_direction_speeds(all_counted,
STOPPED_THRESHOLD)
 relevant_speeds['overall'] = overall_avg

 return relevant_speeds

3.5.4 ESAL Calculation for Predictive Maintenance

Vehicle Damage Factors (VDFs), assumed from AASHTO 1993 table values, are applied

as follows: car (0.0005), motorcycle (0.0001), bus (0.15), and truck (2.0). Per-class

Equivalent Single Axle Loads (ESALs) are computed as ESAL_class = count_class ×

VDF_class, with total ESAL being the sum across all classes. Directional ESALs are

calculated similarly using traffic splits (up/down or left/right) to attribute loads by movement

direction. The backend aggregates ESALs by class, direction, and total, then exports CSV

and human-readable text reports including timestamps and session metadata.

ESAL calculation:

def calculate_esal(counts, split_counts=None):
 VDF = {
 "car": 0.0005,
 "motorcycle": 0.0001,
 "bus": 0.15,
 "truck": 2.0
 }
 esal_by_class = {cls: float(counts.get(cls, 0)) * VDF.get(cls, 0.0) for
cls in VDF}
 esal_total = float(sum(esal_by_class.values()))

 # If split counts provided (e.g. up/down or left/right), calculate those
too
 if split_counts:
 esal_by_direction = {}
 for direction, dir_counts in split_counts.items():
 dir_esal = {}
 dir_total = 0.0
 for cls in VDF:
 val = float(dir_counts.get(cls, 0)) * VDF.get(cls, 0.0)
 dir_esal[cls] = val
 dir_total += val
 esal_by_direction[direction] = {
 "by_class": dir_esal,
 "total": dir_total
 }
 return esal_by_class, esal_total, esal_by_direction

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

47

 return esal_by_class, esal_total

In summary, BYTETrack is implemented via Ultralytics tracking APIs (enabled by the

included bytetrack.yaml in the repository), while speed estimates are approximate and

intended solely for comparative directional averages, not legal metrology.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

48

4. Chapter 4: Experimental Setup

4.1 Dataset Selection and Preparation

Table 4.1 illustrates the most common relatable dataset for vehicle detection in urban

scenarios, compared for training the model.

Table 4.1: Datasets comparison.

Dataset Resolution Annotations Focus Area Limitation

Cityscapes 2048×1024 Pixel-wise,

object detection

Urban traffic Limited to

European cities

KITTI 1242×375 3D bounding

boxes, object

detection

Autonomous

driving

Small dataset

size

COCO Varies Bounding boxes,

segmentation

General object

detection

Not specific to

traffic scenes

Waymo

Open

1920×1080 3D LiDAR,

bounding boxes

Self-driving cars Requires LiDAR

processing

Berkeley

Deep Drive

(BDD100K)

1280×720 Object detection,

segmentation

Diverse driving

scenarios

No pixel-wise

segmentation

In short, the KITTI dataset is more used for autonomous driving, and it has a smaller

dataset size. As for COCO, it is a general object detection dataset and not specialized in traffic

scenes. The Waymo Open Dataset is considered beyond the scope of this research. The

simplicity in managing the Cityscape dataset with its 5,000 high-resolution images and

detailed labelling, specific for autonomous driving, made it a strong candidate. However,

Berkeley Deep Drive has more diversity of scenarios and is five times bigger than Cityscape,

containing 100,000 high-quality images for vehicle classes. So, Berkeley Deep was the

choice. Also, considering that for real-time vehicle detection accuracy, the higher the image

resolution, the better for high quality training.

BDD100K is the largest and most diverse open driving video dataset, containing 100,000

high-resolution video clips (over 1,100 hours) collected from more than 50,000 rides across

various U.S. regions, weather conditions, times of day, and scene types (city, highway,

residential). Released by UC Berkeley BAIR, it includes rich annotations on keyframes—

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

49

object bounding boxes, drivable areas, lane markings, and instance segmentation—making

it the standard benchmark for multitask perception and autonomous driving research.

Furthermore, BDD100 has the group of classes that are critical for this work: cars, trucks,

buses, motorcycles, and bicycles (Table 4.2). In addition, the focus of this dataset is real-

world traffic representation, which makes it superior to other datasets considering the

mentioned objectives of this work.

Figure 4.1: Statistics of different types of objects (from BDD100K site).

Statistics of different types of objects.

Figure xx illustrates a balanced class of vehicles in terms of instances. Moreover, this dataset

is accessible for research purposes and has no license restrictions; it is open source.

4.2 Model Training (YOLO)

4.2.1 Environment Setup (Hardware/Software)

Experimental Environment

Hardware Specifications

The implementation was conducted on a desktop computer equipped with an Intel(R) Core

(TM) i5-8400 CPU, with 16GB of RAM and graphical interface card of NVIDIA (GeForce

GTX 1070 GPU) with 16GB VRAM. The system utilized a 1TB SSD for storage, ensuring

fast data access during training, as we can see in Table 4.3.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

50

Table 4.2: Hardware speficifications.

CPU GPU RAM Storage

Intel(R) Core

(TM) i5-8400 CPU

@ 2.80GHz 2.81

GHz

NVIDIA

GeForce GTX

1070 8GB VRAM

8.0

GB
1TB SSD

Software Specifications

Regarding the software environment, it was the operative system of Windows 11 pro,

Visual Studio Code, Python 3.11 as the programming language. The deep learning framework

used was Ultralytics YOLOv11m from the official site, with CUDA 12.1 and cuDNN 8.5.0

for GPU acceleration. Key libraries such as NumPy (1.23.5), OpenCV (4.7.0), and Pandas

(1.5.3) were used for data processing and visualization. Table 4.4 shows in resume:

Table 4.3: Software specification.

OS
Python

environment

Python

version

Support

on

programming

DL

Framework

Key

Libraries

CUDA

and cuDNN

Windows

11 Pro
Pytorch

Python

3.11

Visual

Studio code

Ultralytics

YOLOv11n

NumPy,

OpenCV,

Pandas

CUDA

12.1

cuDNN

8.5.0

Virtual Environment

For the preservation of the project files and to avoid conflicts and misleading on file

reading and dependencies, an isolated virtual environment was created, using pip in the

terminal prompt of VS Code to manage dependencies. The necessaries libraries were

installed such as NumPy, Pandas, OpenCV, Pytorch. Others required packages were installed

via “pip”, ensuring consistency across different systems.

Visual Studio Code

The easy integration capability of VS Code for Python language with its Python extension,

helps on identifying errors and efficiently fix them with IntelliSense suggestions. VS Code

makes it easy to create and manage the project files. Furthermore, it is simple to implement

changes and reverse them by simply turning code into comments, which helps on controlling

the different versions and approaches used in the code.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

51

VS Code was used to create and apply changes to the train.py file, the dataset.yaml file,

and to convert the annotation from “json” to “txt” format using a python customized.

Moreover, the built-in terminal also allowed me to run scripts to reorganize the dataset

folder on the easy way to process, without leaving the IDE.

4.2.2 Training Configuration and Hyperparameters

To train the model, the relevant libraries were imported, and the desired pretrained model

was loaded (previously downloaded from ultralytics site), as we can see in the code below.

Training code:

import yaml
import multiprocessing
from ultralytics import YOLO

def main():
 with open('dataset.yaml', 'r') as f:
 data = yaml.safe_load(f)
 model = YOLO('yolo11n.pt')
 """
 results = model.train(
 data='dataset.yaml', # Path to dataset config
 epochs=50,
 imgsz=640,
 batch=8,
 device=0,
 pretrained=True,
 optimizer='AdamW',
 lr0=0.01,
 patience=25,
 save_period=10,
 project='mixed_COCO_BDD100k',
 name='exp1'
)
 """

 try:
 metrics = model.val()
 except Exception:
 metrics = None
 print('Training completed. Best model saved in
runs/detect/train/weights/best.pt')

if __name__ == '__main__':
 try:

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

52

 multiprocessing.freeze_support()
 except Exception:
 pass
 main()

Dataset configuration:
 names:

...
- car
- truck
- bus
- train
- motorcycle
- bicycle

...
nc: 80
path: G:\Users\guima\Downloads\Coco # dataset root dir

train: mix_COCO_CSCAPE_BDD100/images # train images (53,518 images)

val: COCO_vehicles_val/images

4.3 Prototype Application Development

The architectural components defined in Chapter 3 were integrated into a functioning real-

time application. The validated YOLO model was deployed within the FastAPI backend,

connecting the vision pipeline (Figure 3.4) to the frontend interface. The system was then

tested using the following scenario to validate the end-to-end workflow illustrated in Figure

4.1.

Video

Source
→

YOLO

Detection
→ BYTETracker →

Vehicle

Counter
→ WebSocket → UI

↓ ↓ ↓ ↓ ↓ ↓
File/

Stream
 Detections Tracking Count Transmission Webpage

Figure 4.2: How it works.

4.3.1 Backend (FastAPI) and Frontend (Streamlit) Setup)

To test the proposed real-time vehicle detection, tracking and counting system, a prototype

python application was created. From Visual Studio Code, it was created a backend code and

frontend code, which was hosted on a local virtual server and accessible over the local

network using Unicorn for FastAPI as the backend server for hosting the application locally

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

53

and make it accessible over the local LAN network, and Streamlit as the frontend to build

interactive data for user interface (Table 4.5).

Table 4.4: Prototype essential tools.

Tool Purpose Command

Uvicorn + FastAPI API backend or web services (fast) uvicorn app:app ...

Streamlit
Interactive dashboards/UI for data

apps
streamlit run webapp.py

4.3.2 Testing Scenario

As presented in Figure 4.3, it used a camera as the source of video streaming from the

street road, the video is sent to the server(desktop), the application runs on a webpage in the

same device. In this scenario, outputs such as bounding boxes, class labels, and tracking

identifiers are rendered via the web interface, thereby providing an end-to-end validation of

the integrated detection and tracking pipeline. The counting is presented in real time in the

Detection report, at the end it is summarized in a final report at the left part of the page.

Camera

Desktop with GPU used as

server and user device
Figure 4.3: System setup.

This setup which is cost-effective, was deployed without dedicated hardware, while

maintaining real-time processing compatibility with Ultralytics and FastAPIs, the interface

is presented in figure 4.4.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

54

Figure 4.4: User interface

4.4 Evaluation Methodology

4.4.1 Performance Metrics

Real-time object detection and tracking systems must balance speed, accuracy, and

efficiency. Below are the key metrics, according (A. Wang et al., 2024b):

1. Speed (Ensuring real-time responsiveness)

- FPS (Frames Per Second): Measures how many frames the system processes per

second. ≥30 FPS (≈33ms/frame) is needed for smooth real-time performance.

- End-to-End Latency: Total processing time per frame (including detection &

tracking). Must stay <33ms to match 30 FPS.

2. Accuracy (Ensuring correct detections & tracking)

- mAP@0.5 (Mean Average Precision at IoU=0.5): Evaluates detection accuracy by

checking if predicted boxes match ground truth (IoU ≥ 0.5). Higher mAP = better

detection.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

55

- MOTA (Multiple Object Tracking Accuracy): Measures tracking performance by

penalizing false positives, missed detections, and ID switches. >50% is considered

acceptable.

3. Efficiency (Optimizing resource usage)

- Hardware Utilization (GPU/CPU Usage): Should stay <80% to prevent overheating

and allow multitasking.

- Power Consumption (Watts per Inference): Critical for battery-powered devices

(e.g., drones, edge AI). Lower watts = longer runtime.

Supporting Metrics

- IoU (Intersection over Union): Measures overlap between predicted and ground-

truth boxes. IoU ≥ 0.5 is a common threshold.

- Precision: % of detected objects that are correct (low false positives).

- Recall: % of actual objects detected (low misses).

These metrics ensure real-time systems are fast, reliable, and efficient in real-world

applications.

4.4.2 Experimental Protocol

The experimental evaluation follows a structured protocol designed to ensure

reproducibility, comprehensive assessment, and practical relevance to urban planning

applications.

Evaluation Datasets and Scenarios

Primary Dataset: COCO + BDD100k

- ~50,000 high-quality urban scene images with fine annotations

- Focus on urban environments across varying conditions

- Vehicle classes: car, truck, bus, motorcycle, bicycle.

Experimental Procedure

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

56

Phase 1: Quantitative Model Evaluation

1. Detection Performance Assessment

a. Evaluate trained YOLO model on validation set

b. Calculate mAP, precision, recall across all vehicle classes

c. Generate precision-recall curves and confusion matrices

2. Tracking Performance Validation

a. Process video sequences through complete detection-tracking pipeline

b. Compute MOTA, IDF1, and HOTA metrics

c. Analyse identity preservation across frames

3. Computational Performance Benchmarking

a. Measure FPS on target hardware (NVIDIA GTX 1070)

b. Monitor GPU/CPU utilization during continuous operation

c. Assess memory consumption and thermal characteristics

Phase 2: Qualitative System Evaluation

1. Visual Inspection

a. Manual review of detection and tracking results

b. Identification of failure cases and edge conditions

c. Assessment of bounding box stability and consistency

2. Use Case Validation

a. Vehicle counting accuracy in simulated traffic scenarios

b. ESAL calculation reliability compared to manual counts

c. Integration testing with web interface prototype

Success Criteria

Based on the system requirements established in Section 3.2, the following success

thresholds are defined:

Table 4.5: Success criteria

Metric Category Minimum

Acceptance

Target Performance Excellence

Threshold

Detection Accuracy mAP@50 ≥ 0.50 mAP@50 ≥ 0.65 mAP@50 ≥ 0.75

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

57

Tracking

Performance

MOTA ≥ 0.50 MOTA ≥ 0.65 MOTA ≥ 0.75

Computational

Performance

FPS ≥ 10 FPS ≥ 15 FPS ≥ 25

Counting Accuracy ≥ 85% ≥ 92% ≥ 95%

This comprehensive evaluation methodology ensures rigorous assessment of the

proposed system's capabilities while maintaining practical relevance to real-world urban

planning applications. The multi-faceted approach addresses both technical performance and

operational requirements, providing a solid foundation for validating the research hypotheses

and system objectives.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

58

5. Results and Discussion

In this chapter, it will be discussed and analysed the results of the YOLO11n fine-tuning

on a mixed COCO + BDD100k dataset. The key performance metrics observed include loss

values on training and validation, mean Average Precision (mAP), precision, and recall, to

assess the effectiveness of the model.

5.1 Model Training Performance (Loss Curves)

The model was trained for 50 epochs with smooth convergence, as shown in Figure 5.1.

Training and validation losses (box) exhibited a rapid initial decline within the first 10

epochs, followed by a steady and gradual decline from epoch 10 to 50; train box loss started

at approximately 1.52 and ended around 1.26, while val box loss started near 1.35 and ended

around 1.11, indicating a consistent reduction in bounding-box regression error and improved

localization accuracy.

Classification loss for both training and validation showed a sharp drop in the first ~10

epochs, followed by a continued steady decrease through the remaining epochs; train cls loss

began at ~1.30 and ended near 0.93, whereas val cls loss started at ~1.50 and reached ~1.05

by the final epoch, reflecting strong and ongoing improvement in the model’s ability to

correctly classify vehicles.

Train and validation Distribution Focal Loss decreased smoothly and almost linearly

throughout training, both starting at approximately 1.175–1.18; train DFL ended around 1.04

and val DFL ended near 1.10. The minimal gap between training and validation DFL (and all

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

59

other losses) confirms excellent generalization with no signs of overfitting, demonstrating

stable and healthy convergence.

Figure 5.1: Loss curve evaluation graphics and precision evaluation graphics.

Overall, the curves indicate a well-behaved training process with strong final metrics

(precision ≈ 0.78, recall ≈ 0.63, mAP@50 ≈ 0.70, mAP@50:95 ≈ 0.55), typical of a robust

vehicle-detection model on real-world data.

5.2 Detection and Tracking Performance Metrics

Detection Performance

In figure 5.1, detection performance continued to grow efficiently from the start to the last

epoch (the four graphics on the right), achieving a precision and a recall of above 0.78 and

0.61, respectively. A considerable gain is observed in mAP@50, growing from 0.35 to reach

a peak of around 0.60 at epoch 50. In parallel, mAP@50:95 reached its peak of 0. 51 at the

last epoch, a healthy improvement of the model precision.

Tracking Performance

Tracking evaluation using BYTETrack yielded a MOTA of 0.6753, reflecting robust

multi-object tracking performance. Full MOT metrics show IDF1 = 83.1%, IDP = 82.2%,

IDR = 84.0%, Recall = 84.9%, and Precision = 83.0%, with 25 mostly tracked (MT) and 11

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

60

partially tracked (PT) out of 37 ground truth trajectories. Low identity switches (IDs = 3) and

fragmentations (FM = 76) confirm strong association stability, while MOTP = 0.222 indicates

good localization accuracy.

Figure 5.2: ByteTrack performance evaluation.

Overall, the curves on fig 5.1 indicate a well-behaved training process with strong final

metrics, typical of a robust vehicle-detection model on a real-world data. And, ByteTrack

shows exceptional ID preservation and a high percentage of trajectories tracked. These results

validate effective integration of Ultralytics detection with BYTETrack for reliable vehicle

tracking across frames.

5.3 Qualitative analysis of the model

The results of comparing the pretrained model and the mixed dataset model show a notable

class improvement and stability. Both models were validated on the COCO validation set

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

61

with vehicles' classes and compared in the table below; the last column shows the

improvements.

Table 5.1:Metrics comparison Yolo1n.pt and the mixed model dataset,

Metric Pretrained YOLO11n Mixed 50ep Improvement

mAP@0.5 0.6453 0.7053 +9.31% ↑

mAP@0.5:0.95 0.4595 0.5131 +11.68% ↑

Precision 0.7351 0.7800 +6.11% ↑

Recall 0.5700 0.6122 +7.41%

Below are some random images from the streets of Vila Nova de Gaia for comparison

purposes. On the first image (Figure 5.3) we can see that the Yolo11n.pt detects 7 vehicles

when there are 4, exactly how the mixed dataset model presents. It is also visible the struggles

of Yolo11n.pt when small obstruction is present (see the left side of both images on figure

5.3), however the mixed model behaves consistently. In figure 5.4 and 5.5, the mixed model

is slightly more confident than the Yolo11n.pt.

Figure 5.3:Santo Ovidio's metro station (a).

mailto:mAP@0.5

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

62

Figure 5.4: Santo Ovidio's metro station (b).

Figure 5.5: Vila Nova de Gaia, Canelas, A29.

The mixed dataset model is more conservative and more optimized for precision over

recall, with strong qualitative performance: higher confidence, better calibration, and

strategic detection filtering. Ideal for applications where false positives are costly

(autonomous driving, traffic monitoring).

5.4 Important Fine-tune considerations

The results of this training were considerably positive, considering that the YOLO weights

are pretrained on the COCO dataset, with more than 80 classes and around 110 000 instances,

compared to the mixed dataset containing 28,518 COCO + 25,000 BDD100k, ~200,000+

vehicle annotations across 8 vehicle classes. Moreover, only few classes were used in

training, and 0.7053 of mAP50 and 0.5131 mAP50-90 is sound for YOLO11n.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

63

These results demonstrate the effectiveness of the knowledge transfer process, where the

YOLO11n model, previously trained on the COCO dataset with multiple classes, was able to

competently specialize in vehicle detection in the urban context of BDD100K dataset,

evidenced by the progressive and consistent improvement of all metrics over the 50

finetuning epochs - with emphasis on the significant growth of ~12% in mAP50-95, and

accuracy of 0.78, indicating that the model not only learned to identify vehicles with greater

accuracy, but also refined its spatial location capacity in complex scenarios, thus validating

the strategy of taking advantage of hierarchical characteristics learned in the generic domain

for application in specific computer vision tasks.

5.4 Prototype Application Demonstration

The trained model was deployed in a real-time prototype using FastAPI with

bytetrack.yaml integration. The system processed video streams at 15 to above 30 FPS on

mid-range hardware, depending on video format and data processing, generating per-class

ESALs using AASHTO 1993 VDF assumptions (car: 0.0005, motorcycle: 0.0001, bus: 0.15,

truck: 2.0). Outputs included directional traffic splits, total ESAL aggregation, and

timestamped CSV/text reports, demonstrating practical utility for traffic load monitoring.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

64

Figure 5.6: Prototype webpage demonstration.

The figure 5.7 shows the application running directly on a video from youtube, as we can

see the address in the top part of the image, showing a consistent performance on real-time

video.

To assess the counting accuracy of the proposed system, a camera was installed on the

balcony capturing the vehicles on the street (figure 5.7), a manual validation was performed

by counting 200 vehicles in each traffic direction.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

65

Figure 5.7: Prototype testing.

The model detected 197 vehicles in one direction and 200 in the other. The counting

accuracy was therefore calculated using the simple rule of three
197+200

200+200
× 100 resulting in

99.25%. This high accuracy demonstrates the model’s strong reliability in real-world

conditions, confirming its suitability for automated traffic monitoring.

5.5 Discussion of Limitations

Despite strong convergence, the model exhibits sensitivity to small objects and heavy

occlusion, reflected in the mAP@50:95 gap. Also, knowledge retention requires special

attention for producing learning transfer correctly. Speed estimates are approximate and

intended for comparative directional analysis only, not legal metrology. VDF values are

assumed from AASHTO 1993 tables and may not reflect modern axle configurations. Future

work should incorporate load spectra from weight-in-motion data and explore multi-camera

fusion for improved 3D tracking and occlusion handling.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

66

Despite these challenges, the research establishes a viable framework for future

expansion. Subsequent work should prioritize securing funding for better and updated

datasets and computational resources, collaborating with municipal partners for creating

datasets with localized traffic data and specific for heavy vehicles, and leveraging distributed

computing to improve model performance. These steps would address current gaps while

enhancing the technology's practical utility for urban traffic management.

6. Practical Application and Impact Analysis

6.1 The Role of Traffic Volume in Infrastructure Degradation

Traffic volume plays a decisive role in road deterioration, with wear patterns often

accelerating beyond what traditional reactive maintenance can address. Heavy vehicles,

particularly trucks and buses, impose repeated loads that cause permanent deformation,

cracking, and subgrade damage (Ghanizadeh et al., 2025; Septiyani & Indrastuti, 2024).

Two key metrics in traffic analysis are Average Daily Traffic (ADT) — the mean number

of vehicles passing a point in 24 hours — and Average Annual Traffic (AAT), which is the

daily average over a year. These metrics feed into the Equivalent Standard Axle Load (ESAL)

calculation, which converts the combined effect of all vehicle types into the equivalent

damage caused by a single standard axle load (Aljaleel et al., 2024).

Recent advancements emphasize integrating traffic metrics into AI-driven Predictive

Maintenance (PdM) frameworks, with studies showing that multi-source data fusion

significantly enhances deterioration forecasting accuracy (Umair Hassan et al., 2023). These

approaches are further refined by hybrid techniques that couple machine learning predictions

with dynamic multi-objective optimization to strategically prioritize rehabilitation based on

factors like ESAL-derived wear (Alqasi et al., 2024). This data-driven paradigm is already

being operationalized; for instance, connected vehicle data is now leveraged to assess road

quality at scale via the International Roughness Index (IRI), revealing clear correlations

between high traffic volumes and increased roughness to inform targeted PdM investments

(Llopis-Castelló et al., 2024). Complementing this, image processing and AI enable

proactive, visual distress detection, automatically identifying and prioritizing maintenance

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

67

for traffic-induced cracks and potholes to achieve more sustainable infrastructure outcomes

(Gopalakrishnan et al., 2022).

6.2 Predictive Maintenance Framework

Predictive maintenance systems can set alerts when remaining life falls below a threshold,

allowing timely interventions. Real-time analytics can help urban planners to align

maintenance with actual load patterns, turning high-traffic corridors from costly liabilities

into efficiently managed assets.

Industry analyses indicate that integrating AI, IoT sensor networks, and predictive-

analytics platforms is emerging as a cost-efficient strategy for road-asset management,

particularly across European road networks where data quality, interoperability, and

organizational change management have been identified as critical enablers of measurable

savings (Europe (virtual) 2024: Harnessing the power of predictive maintenance in roads |

McKinsey, 2024). IoT-enabled pavement-monitoring frameworks further demonstrate that

real-time sensing combined with machine-learning models can reduce inspection effort and

maintenance expenditures by improving defect detection, prioritization, and intervention

timing (Cano-Ortiz et al., 2022; Tamagusko et al., 2024). By incorporating traffic-loading

metrics—such as vehicle-type distributions, axle-load spectra, and E SAL factors derived

from national datasets like Portugal’s TMDA—predictive-maintenance systems can evolve

into resilient, cost-effective tools that mitigate the non-linear deterioration associated with

heavy-vehicle volume and overloaded axles (Hatoum et al., 2022).

By incorporating vehicle type distributions and axle factors into ESAL calculations from

sources like Portugal's TMDA data, PdM can evolve into a resilient, cost-effective paradigm,

mitigating the non-linear impacts of traffic volume on global infrastructure.

6.3 Case Study: Traffic Context in Portugal

The necessity for predictive, AI-driven pavement management is starkly illustrated by

traffic data from Portugal's National Road Network (RRN), according to the Autoridade da

Mobilidade e dos Transportes (AMT, 2023), the overall Annual Average Daily Traffic

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

68

(TMDA) across major roads in 2022 was 20,110 vehicles, with intense concentration in

metropolitan areas like Lisbon, where the A5 recorded over 144,000 vehicles per day—

compared to sparse rural traffic on routes like the A4.

Within the same, A cluster analysis report further segments the network into distinct

demand patterns, from high-traffic urban corridors to seasonally spiking tourist routes. These

pronounced regional and seasonal variations in volume directly amplify degradation risks,

particularly in high-ESAL corridors, underscoring the critical need for the predictive

maintenance strategies discussed previously.

6.4 Integration into Smart Urban Ecosystems

The integration of AI-powered vehicle image recognition systems into urban planning and

transportation management offers transformative potential, enabling real-time monitoring

and analysis of traffic patterns, vehicle density, and infrastructure conditions. These systems

provide actionable insights for city planners and traffic authorities while addressing critical

challenges caused by heavy traffic loads.

6.4.1 Real-Time Traffic Monitoring and Road Degradation

AI, with computer vision, can analyze live video feeds to:

- Classify vehicles and count traffic volume (ADT)

- Calculate Equivalent Single Axle Loads (ESAL) using predefined Vehicle Damage

Factors (VDFs)

- Predict remaining pavement life by comparing cumulative ESAL to design

thresholds.

These features can be used by urban planners to monitor infrastructure degradation and

actively prevent serious road damages by performing preventive maintenance and adjusting

traffic, accordingly, as presents the following subsections.

6.4.2 Predictive Maintenance

With computer vision applied to traffic management, it is possible to:

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

69

- Prioritize road repairs: Vehicle overloading is considered one of the most significant

causes of accelerating flexible pavement deterioration, reducing the pavement’s

design life, and affecting the overall sustainability of the pavement system (Hatoum

et al., 2022; Putri et al., 2024). By identifying high-ESAL corridors, such as

Industrial zones with frequent overloaded trucks, for targeted maintenance, AI can

reduce costs of infrastructure repairments.

- Dynamic road resurfacing schedules: Systems integrate real-time ESAL data to

adjust maintenance timelines, avoiding premature failures.

These two features can be used by urban planners to automate intervention in advance.

6.4.3 Smart City Integration

Vehicle detection and tracking with AI can be integrated into smart cities in:

- Public transport optimization: Tracking buses and freight vehicles improves routing,

while emission-aware policies use vehicle class data to reduce carbon footprints

(Singapore, 2018).

- Overload enforcement: Cameras flag overloaded trucks for inspection, mitigating

damage quantified by studies such as AASHTO Guide for Design of Pavement

Structures.

The integration of AI-powered vehicle detection and tracking moves urban management

from a reactive to a predictive and proactive model. As demonstrated, these systems deliver

a dual benefit: they optimize real-time operational efficiency, while

simultaneously safeguarding long-term public assets through precise, data-driven

enforcement against costly wear and tear, as quantified by foundational engineering

principles. Ultimately, this technological synergy is not merely about streamlining traffic, it

is about building a more sustainable, resilient, and economically viable urban future."

6.4.4 Case Studies

The integration of AI-powered vehicle tracking is revolutionizing urban infrastructure

management. Systems like Barcelona's Smart Parking demonstrate how guiding drivers to

available spots directly reduces vehicle miles traveled (VMT) and congestion, a benefit

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

70

confirmed by recent analyses of IoT-based parking solutions (Bhatnagar et al., 2025). This

reduction in circling traffic indirectly lowers the cumulative Equivalent Single Axle Load

(ESAL) on pavements, mitigating long-term wear. Furthermore, the manual ESAL-based

alert systems pioneered by jurisdictions like Sidoarjo (Indonesia) are now being superseded

by predictive AI. Research has progressed to where artificial intelligence can automatically

detect pavement damage and forecast deterioration in real-time, effectively automating

infrastructure lifespan predictions (Abu Dabous et al., 2025). This synergy of dynamic

operational data and long-term structural analytics represents the forefront of building

sustainable and resilient urban transport networks.

By merging real-time operational insights like traffic flow with long-term infrastructure

analytics (ESAL-based wear models), AI systems modernize urban resilience, as seen in

global benchmarks. These innovations, combined with seamless integration into legacy

traffic management systems, will pave the way for more resilient, efficient, and universally

deployable solutions, ultimately supporting smarter urban ecosystems.

7. Conclusion and Future Work

7.1 Synthesis of Contributions

Resorting to Artificial intelligence to address the challenges of human life has proved to

be very successful in response to the rapidly changing events of society, with the structural,

demographic, and climate changes imposing volatile and uncertainty situations with a high

degree of complexity and ambiguity. In the realm of computer vision, image recognition has

been used to bring new solutions and approaches to enhance human life.

In this work it was presented, the base and evolution of machine learning. Also standing

as a study to consider as an introduction to computer vision and artificial intelligence. A very

simplistic approach on how to apply the available models of computer vision was presented;

from gathering the data, training the model, evaluating to implementation in simulated

scenario. A methodology to use image recognition with artificial intelligence for improving

urban planning and transportation through vehicle identification was proposed and developed

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

71

as a prototype, using the recent version of a pre-trained model of YOLO for detecting,

tracking and counting the vehicle on the road, can give insights to help on decision making.

Furthermore, the necessary steps to choose the technologies, to prepare the working

environment and the requirements were presented and explained in a simple way. Also, the

process was presented to select the adequate dataset to enhance the pretrained model

according to the goal of this work. Moreover, the evaluation of the model and analysis of the

results of the experiment showed that the implemented methodology for training the model

was considerably positive and the model learned, although not achieving the peak results.

Key Technical Contributions:

 Implementation of a YOLOv11-based vehicle detection system achieving around

78% precision and 63% recall;

 Development of an integrated tracking and counting pipeline using ByteTrack

algorithm;

 Creation of a web-based prototype application with real-time visualization

capabilities;

 Application of Clean Architecture and Domain-Driven Design principles to computer

vision systems;

 Demonstration of ESAL-based calculation for predictive maintenance framework for

urban infrastructure.

7.2 Implications for Urban Planning and Traffic Management

This study provides valuable insights into how AI-driven vehicle recognition can optimize

traffic management and urban infrastructure. The integration of AI-powered vehicle

recognition systems into traffic monitoring frameworks can enable real-time identification

and classification of vehicles, leading to improved traffic flow regulation and generating

useful data for predicting road maintenance. It can help to detect congestion patterns

automatically, identify high-density traffic zones, and analyze peak-hour trends, which

allows urban planners to design more effective road infrastructure, allocate resources

efficiently, and implement data-driven traffic control measures. Additionally, accurate

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

72

vehicle identification contributes to the development of intelligent transportation systems

(ITS), which facilitate the enhancement of public transport services.

Within the concept of smart cities, urban planners can leverage AI-driven vehicle

recognition data to implement better solutions by using the insights derived from traffic

patterns and vehicle movement analysis for determining optimal locations for roads,

pedestrian pathways, and public transport facilities. Furthermore, AI-enabled simulations can

model different urban development scenarios, allowing policymakers to make informed

decisions on sustainable infrastructure planning.

Specific Implications:

- Real-time Traffic Optimization: AI systems can dynamically adjust traffic signals and

routing based on actual vehicle counts and classifications

- Predictive Infrastructure Management: ESAL calculations enable proactive

maintenance scheduling based on actual road usage patterns

- Data-Driven Urban Planning: Vehicle classification data informs long-term

infrastructure development and public transport planning

- Cost Reduction: Automated monitoring reduces manual inspection costs and enables

targeted maintenance interventions

7.3 Challenges and Future Research Directions

Despite its numerous advantages, AI-driven image recognition for vehicle identification

faces several challenges, including model accuracy in varying environmental conditions,

computational resource requirements, and ethical concerns regarding data privacy. Future

work will focus on curating specific datasets for vehicle detection, refining model training

strategies, and evaluating performance on additional real-world datasets to improve model

robustness against occlusions, adverse weather conditions, and variations in vehicle

appearance. Evaluate rigorously the tracking capacity of the trained model and improve the

model regarding processing frames per second. Additionally, integrating AI with edge

computing solutions can enhance real-time processing capabilities, making these systems

more scalable and deployable in urban environments.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

73

Specific Challenges Identified:

- Environmental Robustness: Performance degradation under adverse weather

conditions and low-light scenarios.

- Computational Requirements: High GPU power demands limiting deployment to

less robust models.

- Dataset Class Imbalance: Underrepresentation of essential vehicle classes

affecting detection accuracy.

- Dataset Limitations: Bias in European-centric training data affecting

generalizability to other regions.

- Access to road and pavement data to estimate lifespan with consideration to traffic

load, environmental conditions, and material quality.

Future Research Directions:

- Multi-sensor Fusion: Integrating LiDAR or thermal imaging with existing camera

systems to improve detection accuracy in challenging conditions.

- Edge Computing: Developing lightweight models for local device deployment to

reduce latency and bandwidth demands.

- Adaptive Learning: Creating mechanisms for systems to evolve with changing urban

environments and vehicle designs.

- Dataset Diversification: Collaborative efforts with cities worldwide to create more

representative training datasets.

- Advanced Tracking Algorithms: Implementing more sophisticated multi-object

tracking to handle complex urban scenarios.

- Real-time ESAL Integration: Developing live ESAL calculation and alert systems for

immediate maintenance prioritization.

- Integration with legacy systems: Explore the possibility of integrating these models

with legacy traffic management systems.

Based on experimental results, specific improvements are needed:

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

74

- The model achieves a reasonable balance between precision and recall but may

benefit from additional training data to reduce missed detections and increase

precision.

- Fine-tuning hyperparameters such as the learning rate and batch size to further

optimize model performance.

- Diversify and add better quality images and annotations originally in YOLO format

to avoid annotation conversion.

- Diversify the dataset with more vehicle classes and models to specialize the model in

vehicle detection.

Despite current limitations, this research establishes a viable framework for future

expansion and demonstrates the significant potential of AI-powered vehicle recognition

systems to transform urban mobility and infrastructure management. The system's modular

design provides a scalable foundation for city-wide deployment. Future work will focus on

integrating edge computing and multi-camera networks to transform the prototype into a

comprehensive, city-scale predictive maintenance platform.

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

75

Bibliography

A Comprehensive Guide to AI Tech Stack. (2025, fevereiro 25). Sparx IT Solutions.

https://www.sparxitsolutions.com/blog/ai-tech-stack/

Abu Dabous, S., Ait Gacem, M., Zeiada, W., Hamad, K., & Al-Ruzouq, R. (2025).

Artificial intelligence applications in pavement infrastructure damage detection with

automated three-dimensional imaging – A systematic review. Alexandria Engineering

Journal, 117, 510–533. https://doi.org/10.1016/j.aej.2024.11.081

Abubakr, M., Rady, M., Badran, K., & Mahfouz, S. Y. (2024). Application of deep learning

in damage classification of reinforced concrete bridges. Ain Shams Engineering Journal,

15(1), 102297. https://doi.org/10.1016/j.asej.2023.102297

Aljaleel, Z. M., Ahmed, N. Y., & Atemimi, Y. K. A. (2024). Finite Element Modeling to

Predicting Rutting in Flexible Pavements under Overloading. Salud, Ciencia y Tecnología -

Serie de Conferencias, 3, 822. https://doi.org/10.56294/sctconf2024822

Alqasi, M. A. Y., Alkelanie, Y. A. M., & Alnagrat, A. J. A. (2024). Intelligent Infrastructure

for Urban Transportation: The Role of Artificial Intelligence in Predictive Maintenance.

Brilliance: Research of Artificial Intelligence, 4(2), 625–637.

https://doi.org/10.47709/brilliance.v4i2.4889

AMT. (2023). Amt-autoridade.pt. https://www.amt-autoridade.pt/

Bhatnagar, P., Sahu, P., Dawra, D. S., Sharma, S., & Sharma, S. (2025). A Review of IOT

Based Smart Parking Systems: Advancements, Challenges & Future Directions. 11(9).

Bird, J. J., & Lotfi, A. (2024). CIFAKE: Image Classification and Explainable

Identification of AI-Generated Synthetic Images. IEEE Access, 12, 15642–15650. IEEE

Access. https://doi.org/10.1109/ACCESS.2024.3356122

Cano-Ortiz, S., Pascual-Muñoz, P., & Castro-Fresno, D. (2022). Machine learning

algorithms for monitoring pavement performance. Automation in Construction, 139,

104309. https://doi.org/10.1016/j.autcon.2022.104309

Cernadas, E. (2024). Applications of Computer Vision, 2nd Edition. Electronics, 13(18),

Artigo 18. https://doi.org/10.3390/electronics13183779

Cityscapes Dataset – Semantic Understanding of Urban Street Scenes. (2020, outubro 17).

https://www.cityscapes-dataset.com/

D, M., Alaswad, F., Aljaddouh, B., Ranganayagi, L., & R, S. (2025). AI-Powered Traffic

Management: Improving Congestion Detection and Signal Regulation. 2025 International

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

76

Conference on Multi-Agent Systems for Collaborative Intelligence (ICMSCI), 899–904.

https://doi.org/10.1109/ICMSCI62561.2025.10894186

De Sordi, J. O. (2021). Variations of the DSR Approach. Design Science Research

Methodology, 111–120. https://doi.org/10.1007/978-3-030-82156-2_7

Di Grande, S., Berlotti, M., & Cavalieri, S. (2024). AI-Powered Urban Mobility Analysis

for Advanced Traffic Flow Forecasting. 57–64. https://doi.org/10.5220/0012625900003714

Ejaz, U., Ramon, W., & Olaoye, G. (sem data). The Role of Big Data and AI in Smart Cities

and Urban Planning.

Europe (virtual) 2024: Harnessing the power of predictive maintenance in roads |

McKinsey. (2024). https://www.mckinsey.com/industries/infrastructure/global-

infrastructure-initiative/roundtables/europe-2024-harnessing-the-power-of-predictive-

maintenance-in-roads?utm_source=chatgpt.com

Faqih Seknun, H., Setyawan, A., & Pungky Pramesti, F. (2025). Assesment of road

condition and roads maintenance to reduce potential environmental damage. IOP

Conference Series: Earth and Environmental Science, 1438(1), 012085.

https://doi.org/10.1088/1755-1315/1438/1/012085

Francisco, K. V., Robles, E. C., & Samson, H. P. (2024). Artificial Intelligence for Traffic

Management: A Comprehensive Review of Advances and Challenges (SSRN Scholarly

Paper No. 5062545). Social Science Research Network.

https://doi.org/10.2139/ssrn.5062545

Ghanizadeh, A. R., Fakhri, M., Amlashi, A. T., & Dessouky, S. (2025). Effect of strain

waveform modeling and loading frequency on the fatigue life of asphalt concrete.

Construction and Building Materials, 462, 139906.

https://doi.org/10.1016/j.conbuildmat.2025.139906

Hatoum, A. A., Khatib, J. M., Barraj, F., & Elkordi, A. (2022). Survival Analysis for

Asphalt Pavement Performance and Assessment of Various Factors Affecting Fatigue

Cracking Based on LTPP Data. Sustainability, 14(19), 12408.

https://doi.org/10.3390/su141912408

Igorevich Rozhdestvenskiy, O., & Poornima, E. (2024). Enabling Sustainable Urban

Transportation with Predictive Analytics and IoT. MATEC Web of Conferences, 392, 01179.

https://doi.org/10.1051/matecconf/202439201179

Implementing Command Query Responsibility Segregation (CQRS) in Large-Scale

Systems. (2024). International Journal of Research in Modern Engineering & Emerging

Technology, 12(12), 49–73. https://doi.org/10.63345/ijrmeet.org.v12.i12.3

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

77

INNOVATIVE TECHNOLOGIES FOR TRAINING AND EDUCATING YOUNG PEOPLE.

(2025). International Science Group.

Jiang, X., Hadid, A., Pang, Y., Granger, E., & Feng, X. (Eds.). (2019). Deep Learning in

Object Detection and Recognition. Springer Singapore. https://doi.org/10.1007/978-981-10-

5152-4

Junker, A., & Lazzaretti, F. (2025). API Design Supported by Domain-Driven Design.

Crafting Great APIs with Domain-Driven Design, 71–119. https://doi.org/10.1007/979-8-

8688-1457-0_5

Kamrowska-Załuska, D. (2021). Impact of AI-Based Tools and Urban Big Data Analytics

on the Design and Planning of Cities. Land, 10(11), Artigo 11.

https://doi.org/10.3390/land10111209

Kapferer, S., & Zimmermann, O. (2020). Domain-specific Language and Tools for

Strategic Domain-driven Design, Context Mapping and Bounded Context Modeling. 299–

306. https://doi.org/10.5220/0008910502990306

Kourtit, K., Nijkamp, P., Osth, J., & Turk, U. (2024). Is artificial intelligence a trustworthy

route navigation system for smart urban planning? Eastern Journal of European Studies,

15(2), 30–47. https://doi.org/10.47743/ejes-2024-0203

Krauss, P. (2024). Artificial Intelligence and Brain Research: Neural Networks, Deep

Learning and the Future of Cognition. Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-662-68980-6

Lano, K., & Yassipour Tehrani, S. (2023). Introduction to Clean Architecture Concepts.

Undergraduate Topics in Computer Science, 35–49. https://doi.org/10.1007/978-3-031-

44143-1_2

Lee, R. S. T. (2020). Artificial Intelligence in Daily Life. Springer Singapore.

https://doi.org/10.1007/978-981-15-7695-9

Liao, K. (2022). Road Damage Intelligent Detection with Deep Learning Techniques. 2022

IEEE 5th International Conference on Information Systems and Computer Aided Education

(ICISCAE), 795–799. https://doi.org/10.1109/ICISCAE55891.2022.9927635

Llopis-Castelló, D., Camacho-Torregrosa, F. J., Romeral-Pérez, F., & Tomás-Martínez, P.

(2024). Estimation of Pavement Condition Based on Data from Connected and

Autonomous Vehicles. Infrastructures, 9(10), 188.

https://doi.org/10.3390/infrastructures9100188

Marasinghe, R., Yigitcanlar, T., Mayere, S., Washington, T., & Limb, M. (2024). Computer

vision applications for urban planning: A systematic review of opportunities and

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

78

constraints. Sustainable Cities and Society, 100, 105047.

https://doi.org/10.1016/j.scs.2023.105047

Nadarajan, J., & Sivanraj, R. (2022, dezembro 13). Attention-Based Multiscale

Spatiotemporal Network for Traffic Forecast with Fusion of External Factors.

https://www.mdpi.com/2220-9964/11/12/619

Neha, F., Bhati, D., Shukla, D. K., & Amiruzzaman, M. (2024). From classical techniques

to convolution-based models: A review of object detection algorithms (No.

arXiv:2412.05252). arXiv. https://doi.org/10.48550/arXiv.2412.05252

Ogunkan, D. V., & Ogunkan, S. K. (2025). Exploring big data applications in sustainable

urban infrastructure: A review. Urban Governance, 5(1), 54–68.

https://doi.org/10.1016/j.ugj.2025.02.003

Ponce, P., Peffer, T., Mendez Garduno, J. I., Eicker, U., Molina, A., McDaniel, T., Musafiri

Mimo, E. D., Parakkal Menon, R., Kaspar, K., & Hussain, S. (2023). Data and AI Driving

Smart Cities (Vol. 128). Springer International Publishing. https://doi.org/10.1007/978-3-

031-32828-2

Putri, S. A., Sholichin, I., & Fatikasari, A. D. (2024). Analysis of The Influence of Vehicle

Overloading on The Remaining Life of The Road Plan. Composite: Journal of Civil

Engineering, 3(2), 13–24. https://doi.org/10.26905/cjce.v3i2.13274

Ren, M., Zhang, X., Zhi, X., Wei, Y., & Feng, Z. (2024). An annotated street view image

dataset for automated road damage detection. Scientific Data, 11(1), 407.

https://doi.org/10.1038/s41597-024-03263-7

Sager, C., Janiesch, C., & Zschech, P. (2021). A survey of image labelling for computer

vision applications. Journal of Business Analytics, 4(2), 91–110.

https://doi.org/10.1080/2573234X.2021.1908861

Saini, K., & Sharma, S. (2025). Smart Road Traffic Monitoring: Unveiling the Synergy of

IoT and AI for Enhanced Urban Mobility. ACM Comput. Surv., 57(11), 276:1-276:45.

https://doi.org/10.1145/3729217

Septiyani, Y. N., & Indrastuti. (2024). The Impact of Load Traffic of Road Deterioration in

Urban Areas: Case Study Jalan KH Abdul Halim Majalengka. LEADER: Civil Engineering

and Architecture Journal, 2(4), 911–919. https://doi.org/10.37253/leader.v2i4.10145

Serrano, L. G. (2021). Grokking machine learning. Manning Publications.

Singapore, M. of T. (2018). LTA | Land Transport Master Plan 2040.

https://www.lta.gov.sg/content/ltagov/en/who_we_are/our_work/land_transport_master_pla

n_2040.html

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

79

Solahudin, N., & Susanto, M. D. P. (2025). Analysis of Road Damage Factors Based on

Vehicle Load and Volume on K.H. Zaenal Arifin Road Segment Cikulak – Cibogo.

Devotion : Journal of Research and Community Service, 6(4), Artigo 4.

https://doi.org/10.59188/devotion.v6i4.25454

Tamagusko, T., Gomes Correia, M., & Ferreira, A. (2024). Machine Learning Applications

in Road Pavement Management: A Review, Challenges and Future Directions.

Infrastructures, 9(12), 213. https://doi.org/10.3390/infrastructures9120213

Ultralytics. (2025). Home. https://docs.ultralytics.com/

Umair Hassan, M., Hagen Steinnes, O.-M., Gribbestad Gustafsson, E., Løken, S., & A.

Hameed, I. (2023, março 8). Predictive Maintenance of Norwegian Road Network Using

Deep Learning Models. https://www.mdpi.com/1424-8220/23/6/2935

U.S. Department of Transportation. (2024, janeiro). FHWA Bridge Preservation Research

Roadmap.

Valdovinos-Chacón, G., Ríos-Zaldivar, A., Valle-Cruz, D., & Lara, E. R. (2025). Integrating

IoT and YOLO-Based AI for Intelligent Traffic Management in Latin American Cities. Em

R. Sandoval-Almazán & D. Valle-Cruz (Eds.), Artificial Intelligence in Government: Latin

America Challenges and Expectations (pp. 227–253). Springer Nature Switzerland.

https://doi.org/10.1007/978-3-031-87623-3_10

Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J., & Ding, G. (2024a). YOLOv10:

Real-Time End-to-End Object Detection.

Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J., & Ding, G. (2024b). YOLOv10:

Real-Time End-to-End Object Detection (No. arXiv:2405.14458). arXiv.

https://doi.org/10.48550/arXiv.2405.14458

Wang, H., Yuan ,Yun, Yang ,Xianfeng Terry, Zhao ,Tian, & and Liu, Y. (2023). Deep Q

learning-based traffic signal control algorithms: Model development and evaluation with

field data. Journal of Intelligent Transportation Systems, 27(3), 314–334.

https://doi.org/10.1080/15472450.2021.2023016

Wubuli, A., Li, F., Cao, S., & Zhang, L. (2025). Timing of Preventive Highway

Maintenance: A Study from the Whole Life Cycle Perspective. Sustainability, 17(3), Artigo

3. https://doi.org/10.3390/su17031009

Yap, W., Chang, J.-H., & Biljecki, F. (2023). Incorporating networks in semantic

understanding of streetscapes: Contextualising active mobility decisions. Environment and

Planning B: Urban Analytics and City Science, 50(6), 1416–1437.

https://doi.org/10.1177/23998083221138832

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

80

Yigitcanlar, T., Kankanamge, N., Regona, M., Ruiz Maldonado, A., Rowan, B., Ryu, A.,

Desouza, K. C., Corchado, J. M., Mehmood, R., & Li, R. Y. M. (2020). Artificial

Intelligence Technologies and Related Urban Planning and Development Concepts: How

Are They Perceived and Utilized in Australia? Journal of Open Innovation: Technology,

Market, and Complexity, 6(4), Artigo 4. https://doi.org/10.3390/joitmc6040187

Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo, P., Liu, W., & Wang, X.

(2022). ByteTrack: Multi-object Tracking by Associating Every Detection Box. Em S.

Avidan, G. Brostow, M. Cissé, G. M. Farinella, & T. Hassner (Eds.), Computer Vision –

ECCV 2022 (Vol. 13682, pp. 1–21). Springer Nature Switzerland.

https://doi.org/10.1007/978-3-031-20047-2_1

Zhao, X., Wang, L., Zhang, Y., Han, X., Deveci, M., & Parmar, M. (2024). A review of

convolutional neural networks in computer vision. Artificial Intelligence Review, 57(4), 99.

https://doi.org/10.1007/s10462-024-10721-6

Zhu, Y., Wang, Y., An, Y., Yang, H., & Pan, Y. (2024). Real-Time Vehicle Detection and

Urban Traffic Behavior Analysis Based on Unmanned Aerial Vehicle Traffic Videos on

Mobile Devices (SSRN Scholarly Paper No. 4976574). Social Science Research Network.

https://doi.org/10.2139/ssrn.4976574

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

81

Appendix

Appendix A - Training Batch

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

82

Appendix B

Validation Batch

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

83

Appendix C - Class Balance

AI-Powered Vehicle Image Recognition for Smart Urban Planning and Traffic Management

84

Appendix D

Confusion Matrix

	Acknowledgements
	Abstract
	Resumo
	Summary
	List Of Figures
	List Of Tables
	Acronyms
	1. Introduction
	1.1 Context
	1.2 Motivation
	1.3 Purpose
	1.4 Method
	1.5 Structure of the document

	2. Artificial Intelligence in Urban Planning and traffic management
	2.1 Artificial Intelligence and Its Role in Urban Planning
	2.2 Artificial Intelligence for traffic management and Smart Cities
	2.3 Machine learning and Computer Vision
	2.4 Deep Learning
	2.4.1 Convolutional Neural Networks
	2.4.2 Image classification
	2.4.3 Object detection

	2.5 Traffic Volume Impact on the Roads
	2.5.1 An AI & Computer Vision Approach for Vehicle Counting and Classification

	2.6 Related Works

	3. System Design and Methodology
	3.1 Research Methodology and Development Approach
	3.2 System requirements
	3.3 Proposed System Architecture
	3.3.1 Architectural Principles and Patterns
	3.3.2 Structural Diagrams
	3.3.3 Core Domain Models
	3.3.4 Runtime Components
	3.3.5 Summary table: Core Domain Models and Runtime Components

	3.4 System Implementation
	3.4.1 Technologies and Tools
	3.4.2 Applied Design Patterns

	3.5. Core Algorithms
	3.5.1 Vehicle Detection with YOLO
	3.5.2 Multi-Object Tracking with BYTETrack
	3.5.3 Virtual Line Counting Algorithm and Speed Average Calculation
	3.5.4 ESAL Calculation for Predictive Maintenance

	4. Chapter 4: Experimental Setup
	4.1 Dataset Selection and Preparation
	4.2 Model Training (YOLO)
	4.2.1 Environment Setup (Hardware/Software)
	4.2.2 Training Configuration and Hyperparameters

	4.3 Prototype Application Development
	4.3.1 Backend (FastAPI) and Frontend (Streamlit) Setup)
	4.3.2 Testing Scenario

	4.4 Evaluation Methodology
	4.4.1 Performance Metrics
	4.4.2 Experimental Protocol

	5. Results and Discussion
	5.1 Model Training Performance (Loss Curves)
	5.2 Detection and Tracking Performance Metrics
	5.3 Qualitative analysis of the model
	5.4 Important Fine-tune considerations
	5.4 Prototype Application Demonstration
	5.5 Discussion of Limitations

	6. Practical Application and Impact Analysis
	6.1 The Role of Traffic Volume in Infrastructure Degradation
	6.2 Predictive Maintenance Framework
	6.3 Case Study: Traffic Context in Portugal
	6.4 Integration into Smart Urban Ecosystems
	6.4.1 Real-Time Traffic Monitoring and Road Degradation
	6.4.2 Predictive Maintenance
	6.4.3 Smart City Integration
	6.4.4 Case Studies

	7. Conclusion and Future Work
	7.1 Synthesis of Contributions
	7.2 Implications for Urban Planning and Traffic Management
	7.3 Challenges and Future Research Directions

	Bibliography
	Appendix

